2024年最新词达人小工具2

文章介绍了词达人小工具从C版本升级到Python2.0的新特性,重点在于如何使用Fiddler抓取和解析网页响应来自动搜索答案,并提供了源码示例。此外,还提到了学习路线、Python视频资源和练手项目的链接。
额外注意事项
  • 无法使用的请仔细参考文章开头链接的使用方法Fidder配置
  • 配置Fidder时的脚本时添加脚本变更为以下内容即可:
      if(oSession.uriContains("https://wap.vocabgo.com/Student/ClassTask/SubmitAnswer")){
            oSession.utilDecodeResponse();
            oSession.SaveResponseBody("C:/responseBody.txt");
       }
       if(oSession.uriContains("https://wap.vocabgo.com/Student/StudyTask/SubmitAnswer")){
            oSession.utilDecodeResponse();
            oSession.SaveResponseBody("C:/responseBody.txt");
        }

  • 记得使用右键管理员模式运行Fidder
词达人小工具2.0新特性
  • 满足自学任务使用
  • 答案显示优化
  • 源码开放提供大家学习(一代为C,2.0为Python)(文章末尾)
代码运行截图(左为1.0)

在这里插入图片描述
在这里插入图片描述

源码C/Python
C - 词达人小工具1.0
#include<stdio.h>
#include <stdlib.h>
#include <string.h>
#include<windows.h>

#define MAX\_BUFFER 1024 //缓冲区大下 
#define BIT 2

/\*\*
\*\* time:2020年3月29日 13:16:36
\*\* author:江浒一只猫
\*\* describe:自动搜索词达人答案,仅供学习参考使用,任何人不得将此用于商用
\*/

int main() {
	static char answer[9] = "\"answer\"";
	static char answer_arr[11] = "answer\_arr";
	static char answer_content[15] = "answer\_content";
	static char Ture[BIT] = "t";

	long answersite;
	char buff[BIT],answerbuff[MAX_BUFFER/BIT], answer_arrbuff[MAX_BUFFER/BIT];
	int answerlite;
	FILE \*fp;            /\*文件指针\*/


	while(1) {
		answerlite = 0;
		answersite = 0;

		//if((fp = fopen("D:\\responseBody.txt","r")) == NULL) {
			if((fp = fopen("C:\\responseBody.txt","r")) == NULL) {
				perror("读取资源失败!请检查配置!\n");
				Sleep(1000);
				exit (0) ;
			}
		//}
		//寻找答案
		while(fgets(buff, BIT, (FILE\*)fp) != NULL) {
			//printf("%s", b);
			answersite = ftell(fp);
			fgets(answerbuff, 9, (FILE\*)fp);
			
			//遇到答案标识 
			if(strcmp(answerbuff, answer) == 0) {
				//第几个答案
				answerlite ++;
				//answersite = ftell(fp);
				//取出答案
				fgets(buff, BIT, (FILE\*)fp);
				fgets(buff, BIT, (FILE\*)fp);
				//答案是否正确
				if(strcmp(buff, Ture) == 0) {
					//答案正确 则输出答案索引
					printf("%d \n", answerlite);
				}
			}
			fseek(fp, answersite, 0);
			
			fgets(answerbuff, 11, (FILE\*)fp);
			if(strcmp(answerbuff, answer_arr) == 0){
				fgets(buff, BIT, (FILE\*)fp);fgets(buff, BIT, (FILE\*)fp);fgets(buff, BIT, (FILE\*)fp);
				while(fgets(buff, BIT, (FILE\*)fp) != NULL && strcmp(buff, "]")){
					printf("%s", buff);
				}
			}
			fseek(fp, answersite, 0);
			
			fgets(answerbuff, 15, (FILE\*)fp);
			if(strcmp(answerbuff, answer_content) == 0){
				fgets(buff, BIT, (FILE\*)fp);fgets(buff, BIT, (FILE\*)fp);fgets(buff, BIT, (FILE\*)fp);
				while(fgets(buff, BIT, (FILE\*)fp) != NULL && strcmp(buff, "\"")){
					printf("%s", buff);
				}
			}
			fseek(fp, answersite, 0);
		}
		answerlite = 0;
		printf("\n----------------------\n");
		if ( fp != NULL ) {
			fclose(fp);
		}
		Sleep(500);
	}
	return 0;
}


**(1)Python所有方向的学习路线(新版)**  

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。



![在这里插入图片描述](https://img-blog.csdnimg.cn/1f807758e039481fa866130abf71d796.png#pic_center)



**(2)Python学习视频**



包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

![在这里插入图片描述](https://img-blog.csdnimg.cn/d66e3ad5592f4cdcb197de0dc0438ec5.png#pic_center)



**(3)100多个练手项目**

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

![在这里插入图片描述](https://img-blog.csdnimg.cn/f5aeb4050ab547cf90b1a028d1aacb1d.png#pic_center)




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
### 关于达人的大规模处理或自动化脚本 对于达人这一类应用程序的大规模处理或自动化操作,通常会涉及到批量导入导出功能、数据分析以及报告生成功能。如果考虑使用 Python 来构建这样的脚本,`xlwings` 可作为一个有效的工具用于连接 Excel 和 Python 脚本之间的桥梁[^1]。 下面是一个简单的例子展示如何利用 `xlwings` 库读取来自 Excel 文件中的单列表并对其进行某些形式的批量化处理: ```python import xlwings as xw def process_word_list(file_path): # 打开现有的工作簿 wb = xw.Book(file_path) # 假设单位于第一个表的第一列 sheet = wb.sheets[0] words_range = sheet.range('A2:A100') # 根据实际情况调整范围 word_list = [cell.value for cell in words_range if cell.value is not None] processed_words = [] for word in word_list: # 这里可以加入任何想要执行的操作, 如翻译、查询等 result = perform_operation(word) # 自定义函数perform_operation() processed_words.append(result) output_sheet = wb.sheets.add(name='Processed Words') output_sheet.range('A1').value = [['Word', 'Result']] output_sheet.range('A2').value = [[word, res] for word, res in zip(word_list, processed_words)] wb.save() def perform_operation(word): """模拟对单个语进行某种特定操作""" return f"Operation on {word}" ``` 此代码片段展示了怎样加载一个 Excel 文档,从中提取一列数据(假设这些是待处理的汇),并对每一个条目应用某个指定的方法;后再把结果写回到新的表格当中去。这只是一个非常基础的例子,在实际应用场景下可能还需要根据具体业务逻辑做出相应改动。 为了更好地适应不同场景下的需求变化,还可以引入其他库来增强程序的功能,比如使用 `requests` 或者 `httpx` 处理网络请求,用 `pandas` 提供更强大的数据管理能力等等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值