AI会P图:你来描述,我来P_ai p图

本文介绍了热门技术方向Transformer的应用,特别是StyleCLIP,它结合了StyleGAN和CLIP模型,实现了文本驱动的图片编辑。文章详细讲解了StyleCLIP的工作原理、使用方法以及如何在实践中应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文 GitHub https://github.com/Jack-Cherish/PythonPark 已收录,有技术干货文章,整理的学习资料,一线大厂面试经验分享等,欢迎 Star 和 完善。

最近,Transformer 是一个非常火的方向。

比如曾经介绍过的,DALL·E 可以魔法一般按照自然语言文字描述直接生成对应图片。

例如,输入文本:鳄梨形状的扶手椅。

AI 生成的图像:

P图大师在线搞事,你来描述我来P

再比如曾经出过的教程:

用自己训练的AI玩王者荣耀是什么体验?

这两天,OpenAI 又出新活,StyleCLIP 闪亮登场。

StyleCLIP 根据文本描述,修改图片,精准PS。直接看效果:

P图大师在线搞事,你来描述我来P

让奥巴马留莫西干发型一键卸妆,让猫猫变萌,老虎变狮子,建筑风格变成哥特式建筑

只需一张图片一段描述,StyleCLIP就可以对图片进行修改和创作。

P图大师在线搞事,你来描述我来P

AI文字理解,图片修改和创作,一步到位。再也不用怕网络P图大师们的“满分理解”和骚操作了。

P图大师在线搞事,你来描述我来P

今天继续手把手教学,玩转**StyleCLIP**,准备好了吗?

StyleCLIP

**StyleCLIP顾名思义,结合了StyleGANCLIP**模型。

前者,是当下主流的图像生成算法,后者,是大规模图文预训练模型。

两者结合,就可以实现文本到图像的编辑。

**StyleGAN**通过在隐空间(latent space)控制隐藏特征(latent code)来控制图片的属性,生成风格各异的图像。

StyleGAN应该都很熟悉,简单介绍下CLIP

**CLIP**就是**Contrastive Language-Image Pre-Training的缩写,即大规模图文预训练模型,也是OpenAI**的近作。

**CLIP的文本和图像编码器都是基于Transformer**结构的。

**Transformer**的详细教程,可以看我之前发过的文章:

保姆级教程:硬核图解Transformer

**CLIP**算是迈出了多模态的第一步,可以用于多类型图文联合检索。

本质上,**CLIP**模型检索的原理是比较特征空间中两个特征编码的余弦相似度,所以并不局限在文本特征与图像特征的比较。

比如,文本-图像检索。

检索文本:“Tokyo tower at night.”

P图大师在线搞事,你来描述我来P

检索文本:“People come and go on the street.”

P图大师在线搞事,你来描述我来P

再比如,文本+文本-图像检索。

检索文本1:“Flower”,检索文本2:“Blue sky”

P图大师在线搞事,你来描述我来P

**StlyCLIP主要是利用CLIP**模型的力量来实现基于文本的语义图像操作,这种操作的好处是,它既不局限于预设的操作方向,也不需要额外的手动操作

**StlyCLIP整体思想就是:利用CLIP为基础的损失修改StyleGAN**输入的隐藏特征,从而响应用户提供的文本形式。

P图大师在线搞事,你来描述我来P

比如根据用户文本:Orange、Big Ears、Big Nose、Cute改变原图。

主要使用了三种技术:

  • Optimizer:以文本为指导的 latent 优化,其中 CLIP 模型被用作一个损失网络,这是一种通用方法,但需要几分钟的时间来进行优化,以对图片进行操作;
  • Mapper:训练一个用于特定文本提示的 latent 残差映射器。在隐空间中给定一个起点(需要操作的输入图像),映射器在隐空间中产生一个局部步骤;
  • global dir:一种在 StyleGAN 的 style space 中将文本提示映射到输入无关(全局)方向(global direction)的方法,提供了对操作强度和解耦的控制。

更详细的内容,可以直接看论文:

https://arxiv.org/pdf/2103.17249.pdf

算法测试

**StyleCLIP**完全开源,项目地址:

https://github.com/orpatashnik/StyleCLIP

如果不想搭建开发环境,可以直接用Google Colab工程:

https://colab.research.google.com/github/orpatashnik/StyleCLIP

运行**Google Colab**代码有些问题,需要自己修改下代码:

P图大师在线搞事,你来描述我来P

迭代100次,大约3分钟,运行结果:

P图大师在线搞事,你来描述我来P

本地搭建环境也不复杂,StyleCLIP需要先配置CLIP,然后安装第三方库。

P图大师在线搞事,你来描述我来P

权重文件在 Google Drive 下载很慢,我已经提前为大家准备好了直接下载即可提取码:46pz):

https://pan.baidu.com/s/1n_CNA_ypxJKuW0rf-4CrZg

其它没什么难度,就不展开说明了。

絮叨

**Transformer**真的火,有必要好好学一学。

我是 Jack ,我们下期见。

文章转自我的公众号:

https://mp.weixin.qq.com/s/4LNAwEoGjH8YYbp2w8Z9Rg

如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值