最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
👉Python全套学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
如数据以逗号分隔,且没有索引:
df.to_csv("data.csv", sep=",", index=False)
(4)基础数据集特征信息
df.info()
(5)基础数据集统计结果
print(df.describe())
(6) 以表格形式打印数据
print(tabulate(print_table, headers=headers))
其中“print_table”是一列list,“headers”是一列字符串抬头
(7)列出列名称
df.columns
基本数据处理
(8)删除缺失的数据
df.dropna(axis=0, how='any')
返回给定轴上标签的对象,逐个丢掉相应数据。
(9)替换丢失的数据
df.replace(to_replace=None, value=None)
用“value”的值替换“to_replace”中给出的值。
(10)检查 NAN
pd.isnull(object)
检测缺失值(有数值数组中的NaN,对象数组中的None和NaN)
(11)删除特征
df.drop('feature_variable_name', axis=1)
轴为 0 代表行,1 代表列
(12)将对象类型转换为 float
pd.to_numeric(df["feature_name"], errors='coerce')
将对象类型转换为数字型以便计算(如果它们是字符串的话)
(13)将数据转换为 Numpy 数组
df.as_matrix()
(14)获取数据的头“n”行
df.head(n)
(15)按特征名称获取数据
df.loc[feature_name]
(16)将函数应用于数据
这个函数将数据里“height”一列中的所有值乘以2
df["height"].apply(*lambda* height: 2 * height)
或:
def multiply(x):
return x * 2
df["height"].apply(multiply)
(17)重命名数据列
这里我们将数据的第3列重命名为“size”
df.rename(columns = {df.columns[2]:'size'}, inplace=True)
(18)单独提取某一列
df["name"].unique()
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!