数据分析项目|淘宝用户行为分析(Python+可视化)_淘宝用户行为数据分析(2)

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

return pd.concat([pv,uv], axis = 1).reset_index()

pvuv_daily = cal_pvuv(‘date’) # 得到按日期聚合的pv和uv数据
pvuv_daily.plot(x = ‘date’, secondary_y = ‘uv’, grid = True, figsize =(10, 5))


![在这里插入图片描述](https://img-blog.csdnimg.cn/8168e616f23147efaa1a374adbf73383.png)  
 从图可以看出pv和uv整体变化趋势相同,11月25日到12月1日之间,uv变化不明显,pv在11月26日达到小高峰,与当天刚好是周六放假密切相关。从12月1日周四开始,pv和uv涨幅明显,12月2日和12月3日与上周相比较,环比增长率31.4%,uv环比增长率35.7%,可见本次活动宣传和引流效果不错,对实际销售情况的影响将在下个模块分析。


接下来按照小时去分析用户的行为习惯:



pvuv_hour = cal_pvuv(‘hour’)
pvuv_hour.plot(x = ‘hour’, secondary_y = ‘uv’, grid = True, figsize = (10, 5),
xticks = [x for x in range(24)], title = ‘pvuv_hour’)


![在这里插入图片描述](https://img-blog.csdnimg.cn/50dad90717724441bbe86992baa69500.png)  
 从上图可以看出用户的活跃时间从上午10点持续到晚上10点,尤其是从下午6点开始呈现明显上升趋势,到晚上九点左右达到峰值,这符合大多数人的日常作息规律。由此可以建议店铺调整客服工作时间,增加下午6点到晚上10点的客服数量,促使用户从浏览向购买转换。


**4.1.2 平均访问深度和跳失率**



计算总用户数量

uv_count = len(data.user_id.unique())

计算总的页面浏览数量

pv_count = data[data.behavior_type == ‘pv’].shape[0]

计算平均访问深度

print(‘Average access depth is %.1f’ % (pv_count / uv_count))

计算每个用户浏览的页面数

pv_count_perUser = data[data[‘behavior_type’] == ‘pv’].groupby(‘user_id’)[‘behavior_type’]
.count().reset_index().rename(columns = {‘behavior_type’:‘pv_count’})

计算只浏览过一次界面的用户数量

bounce_user_count = pv_count_perUser[pv_count_perUser[‘pv_count’] == 1].shape[0]
print('Bounce Rate is %.3f%% ’ % (100 * (bounce_user_count / uv_count))


可以得到用户的平均访问深度为**90.8**,也就是说在11月25到12月3日9天内平均每个用户每天要访问10个界面,可见淘宝用户粘度很高。


按照流失率=只浏览一次界面/总用户计算的话,发现流失人数只有679人,Bounce Rate 是 **0.069%** 左右,所以平台整体流失率是相当低的。我觉得可以考虑将只有浏览记录再无其他行为的用户视为流失用户,分析此类人群的跳失原因。


之后可以细分到各个商品种类以及各个商品,计算其用户跳失率并采取相应的措施。


**4.1.3 用户转化情况**


接下来分析用户从浏览到最后下单的转化情况,首先先了解一下用户浏览、收藏、加购物车和购买行为的整体分布趋势。



pv_detail = data.groupby([‘behavior_type’,‘hour’])[‘user_id’].count().reset_index().rename(columns={‘user_id’:‘total_behavior’})
fig, axes = plt.subplots(2, 1, figsize = (10,8), sharex = True)
sns.pointplot(x = ‘hour’,y = ‘total_behavior’, hue = ‘behavior_type’, data = pv_detail, ax = axes[0])
sns.pointplot(x = ‘hour’,y = ‘total_behavior’, hue = ‘behavior_type’, data = pv_detail[pv_detail.behavior_type!=‘pv’], ax = axes[1])
axes[0].set_title(‘different_behavior_count’)
axes[0].grid()
axes[1].set_title(‘different_behavior_count_exceptpv’)
axes[1].grid()


![在这里插入图片描述](https://img-blog.csdnimg.cn/8e25b80e81184202a8285422d4591fc6.png)  
 四种用户行为的波动情况基本一致,其中浏览页面pv数远大于其他三项,用户加购物车、收藏和购买数依次降低,可以通过漏斗模型整体分析用户转化情况。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/0d51a20143d34b89b79416e4a370a7e0.png)  
 从浏览到加入购物车的转换率为6.25%,收藏商品的转换率为3.26%,最后购买的转换率为2.23%左右。


**4.1.4 用户行为路径分析**


因为数据中用户行为分为四类,按照浏览在前,购买最后的话,一共有16种组合,利用桑基图分析如下所示:


![img](https://img-blog.csdnimg.cn/img_convert/651fe2a002a156f2920dfd5eb1c60eb8.webp?x-oss-process=image/format,png)


一般认为购买之前必须得先浏览,因为所给数据是截取给定时间内的,所以会存在上图下方unpv的情况。现在只考虑最后产生购买行为的情况,用户从浏览到最后购买其实只有(1)浏览-购买、(2)浏览-加购物车-购买、(3)浏览-收藏-购买、(4)浏览-加购物车-收藏-购买(浏览-收藏-加购物车-购买)等四种情况,再次利用桑基图分析如下:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/c95f713043214fb6abf9c442c11af267.png)  
 由上图可知,大多数购买行为发生在浏览之后,并没有加购物车、收藏等行为。


**4.1.5 用户留存分析**


下面计算本数据中的用户留存:



计算n日留存率

def cal_retention(n = 1):

# 用于记录出现过的user\_id
user_list = [] 
# 取最后一天的前N天
cal_date = pd.Series(data['date'].unique()).sort_values()[:-n] 
# 用于存储最后留存率结果
retention_rates = [] 
for to_date in cal_date:
    # 通过与已经有记录的用户列表的集合对比,识别新用户
    new_user_list = set(data[data['date'] == to_date]['user\_id']) - set(user_list) 
    # 用于存储最后留存率结果
    user_list.extend(new_user_list) 
    # 第n天留存情况
    user_ndate = data[data['date'] == to_date + timedelta(n)]['user\_id'].unique()
    retention_cnt = 0
    for user_id in user_ndate:
        if user_id in new_user_list: 
            retention_cnt += 1
    retention_rate = retention_cnt / len(new_user_list) 
    # 汇总N日留存数据
    retention_rates.append(retention_rate) 
u_retention = pd.Series(retention_rates, index = cal_date)

return u_retention

将每日的留存率聚合后如下图所示:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/2bd31b92114043b09d3462e9616cac1c.png)  
 可视化后如下:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/116efec71e214b7e9ab7e89f749aef3c.png)  
 因为所给数据是截取的部分数据,这里暂认为11月25日所有的登录用户都是新用户,所以11月25日的用户留存率最高。从之前的PV和UV分析可推测平台从12月1日开始搞活动,进而吸引用户登录,所以11月30日和12月1日用户留存率增加。


**(二)用户消费习惯分析**


**4.2.1 用户付费率PUR(Paying User Rate)**


根据用户付费率 = 有购买记录的用户 / 活跃用户计算:



分析用户付费率

paying_user_count = data[data.behavior_type == ‘buy’].user_id.unique().shape[0]

print(‘Paying user Rate is %.2f%%’ % ( 100 * paying_user_count / uv_count))


得到用户付费率为67.94%,淘宝用户付费率还是比较高的。


**4.2.2 用户购买次数**


根据总购买次数 / 总付费用户可得到付费用户平均消费次数为3次,下面进一步分析各购买次数的用户分布:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/b642e16f2a1f441dbd36438e4669f59c.png)  
 由上图可知,购买次数为1次的用户数量最多,大约有88%的用户购买次数在5次以内,购买次数在10次以内的用户占总付费用户的98%。


**4.2.3 用户复购率**


根据用户复购率 = 多次购买用户数 / 总付费用户计算:



#每个付费用户的购买次数
peruser_paying_count = data[data[‘behavior_type’] == ‘buy’].groupby(‘user_id’).count()[‘behavior_type’]
.reset_index().rename(columns={‘behavior_type’:‘paying_count’})

复购用户数量 通过筛选支付次数>=2

paying_retention_user_count = peruser_paying_count[peruser_paying_count[‘paying_count’] >= 2][‘user_id’].count()

print(‘Buyer Retention Rate %.2f%%’ % (100 * paying_retention_user_count / paying_user_count))


可得用户复购率为66.01%。还可以计算用户复购的间隔时间:



buyer_retention_diff = data[data.type == ‘buy’].groupby(‘user_id’).date.apply(lambda x: x.sort_values().diff(1).dropna())
buyer_retention_diff = buyer_retention_diff.map(lambda x: x.days)
buyer_retention_diff.describe()


![在这里插入图片描述](https://img-blog.csdnimg.cn/8b9f160a8228484da9b6c13351346953.png)


箱线图表示不太明显,根据describe()返回值分析,用户复购平均间隔1.2天,有超过50%的用户在同一天内产生多笔交易。


**4.2.4 商品大类销售分析**


分析商品浏览TopN和商品销售TopN的数据:



定义计算销售/浏览TopN的函数

def cal_topN (index, behavior_type, n):
# 创建透视表
topN = pd.pivot_table(data, index = index, values = ‘user_id’, columns = ‘behavior_type’, fill_value=0,
aggfunc=‘count’, margins = True).sort_values(by = behavior_type, ascending = False).fillna(0).head(n)
topN[‘paying_rate’] = topN.apply(lambda x: x.buy / x.pv, axis = 1).apply(lambda x: format(x, ‘.2%’))
topN = topN[[‘pv’,‘buy’,‘paying_rate’]]
return topN


分别查看商品浏览量前10和商品销售量前10:



计算商品大类浏览量前10

category_pv_topN = cal_topN(‘category_id’, ‘pv’, 10)

计算商品大类购买量前10

category_buy_topN = cal_topN(‘category_id’, ‘buy’, 10)


![在这里插入图片描述](https://img-blog.csdnimg.cn/f2fe559b526848a6afa26900a97fedde.png)


针对支付率较高的商品应该分析其原因,思考是否能拓展到其他商品上去。


进一步查看购买量前10和浏览量前10的交集:



查看购买量和浏览量前10的交集

category_pv_buy_topN = pd.merge(category_pv_topN, category_buy_topN,
on = ‘category_id’, how =‘inner’)


![在这里插入图片描述](https://img-blog.csdnimg.cn/64c93520bedb4c13a97b57ba3d051eba.png)


由上图可知存在部分商品浏览量高但购买量较低,应进一步分析原因。


此部分只对商品大类进行分析,可以套用此代码,将‘categoryid’换为‘item\_id’进一步分析具体商品销售情况。


**4.2.5 商品大类行为分析**


即针对所有产生购买行为的商品种类,分析其从浏览到最后购买发生的行为数量和最终购买量的关系。



筛选出产生购买行为的数据

data_buy = data[data[‘behavior_type’] == ‘buy’]

计算各种商品大类的交易数

buy_category = data_buy[[‘category_id’,‘behavior_type’]].groupby(‘category_id’)
.count().rename(columns = {‘behavior_type’:‘buy_count’})

整理各种商品大类的交易数

buy_category = buy_category.sort_values(‘buy_count’,ascending=False).reset_index()

将产生购买行为的数据和原数据外连接,进而得到有购买记录的商品大类的其他行为信息

behav_category = pd.merge(data_buy[[‘user_id’,‘category_id’]], data,
on = [‘user_id’,‘category_id’], how = ‘left’)

计算各种商品大类的行为数

behav_category = behav_category[[‘category_id’, ‘behavior_type’]].groupby(‘category_id’).count()
.reset_index().rename(columns={‘behavior_type’:‘behavior_count’})

统计分析各种商品大类的购买数和产生行为数

buy_behav_category = pd.merge(buy_category, behav_category, on = ‘category_id’, how = ‘inner’)
buy_behav_category = buy_behav_category.assign(behav_per_buy = buy_behav_category[‘behavior_count’] / buy_behav_category[‘buy_count’])


可视化后如下:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/f08c1da74fc64f3eb5898e43e26bc8bc.png)  
 由上图可知,大部分购买行为平均只会产生20次以内的行为,可以据此对商品初步分类,以实施不同的运营策略。


* 购买量大、行为数多(上图右上部分):推测该区域商品是快销产品或高频刚需物品,不仅销量大而且可选择品牌众多,如食品、日用品、护肤品和衣物服装等。平台可以据此将该商品类别建立专区,可以同时浏览查看该类别下的诸多产品,减少用户的多次搜索,提升用户体验度
* 购买量大、行为数少(上图左上部分):推测该区域商品主要为高频产品,行为数少说明可能品牌种类少、被少数品牌垄断,或者是用户对某品牌建立了一定的依赖度等等。此类区域的商品,用户决策相对会轻松,因此应着重快速让用户触达商品,可以优先展示用户购买过的品牌等。
* 购买量小、行为数少(上图左下部分):大多数商品大类都集中分布在这个区域,应该针对具体类别具体分析。
* 购买量小、行为数多(上图右下部分):推测该区域商品低频或者商品贵重,用户需要货比三家、再三考虑后下单,对此可以改善商品的介绍方式,如现在的品牌直播,让用户更快速、直观的了解商品。


**4.2.6 商品关联性分析**


之后准备做专题分析,这里先占个坑…


**(三)用户价值分析**


这里利用RFM模型去分析用户价值,以便针对不同用户采取不同措施。RFM模型的概念如下:


* R(Recency):客户最近一次交易时间的间隔。R值越大,表示客户交易发生的日期越久,反之则表示客户交易发生的日期越近。
* F(Frequency):客户在最近一段时间内交易的次数。F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。
* M(Monetary):客户在最近一段时间内交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/1187cdcf36124009be96bf1cc8c74989.png)  
 由于所给数据集不包含用户购买金额,所以只考虑最近消费时间R和购买频率F,将客户分为有价值的客户、保持客户、发展客户和挽留客户。



1 R: 最近一次消费距今天数统计

nowDate = datetime.datetime(2017,12,4) # 假定当前时间为(2017,12,4)
user_recent_pay = data[data[‘behavior_type’] == ‘buy’].groupby(‘user_id’)[‘date’]
.apply(lambda x: nowDate - x.sort_values().iloc[-1])
user_recent_pay = user_recent_pay.reset_index().rename(columns={‘date’:‘recent’})

2 F: 消费次数统计

user_freq = data[data[‘behavior_type’] == ‘buy’].groupby(‘user_id’).date.count()
user_freq = user_freq.reset_index().rename(columns={‘date’:‘freq’})

3 通过user_id将R、F合并

rfm = pd.merge(user_recent_pay, user_freq, left_on=‘user_id’, right_on=‘user_id’)

4 给R、F打分score

rfm[‘score_recent’] = pd.qcut(rfm[‘recent’], 2, labels = [‘1’, ‘0’])
rfm[‘score_freq’] = pd.qcut(rfm[‘freq’], 2, labels = [‘0’, ‘1’])

5 得分拼接

rfm[‘rfm’] = rfm[‘score_recent’].str.cat(rfm[‘score_freq’])

6 根据RFM分类

rfm = rfm.assign(user_type = rfm[‘rfm’]
.map({‘11’:‘重要客户’, ‘01’:‘保持客户’, ‘10’:‘发展客户’, ‘00’:‘挽留客户’}))


可视化后如下图所示:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/d7d61ad5b91f42d2963392f4bb563606.png)  
 由上图可知重要客户和发展客户比例相当,各占总用户的三分之一左右,挽留客户最少。


### 五、总结与建议



> 
> 总结分析的结论并提出一些建议
> 
> 
> 


**5.1 用户行为分析**


* 12月2日12月3日相较于其他日期用户活跃度、各指标增长明显。与同样是周末的11月25日、11月26日pv环比增长率31.4%,uv环比增长率35.7%,推测是12月2日周五平台开始双十二预热活动或其他活动所致。
* 用户的活跃时间从10:00持续到晚上22:00,其中5:00-10:00和18:00-21:00是用户活跃度迅速增长的时段。21:00点左右达到一天峰值,这符合大多数人的日常作息规律,由此可以建议店铺调整客服工作时间,增加18:00-22:00点的客服数量,提升用户的购买率。仔细观察的话,可以发现10:00和15:00分别达到了一个小高峰,所以可以在这两个时间段开始推广活动等。
* 针对用户路径:


①浏览—购买路径占比高达72.2%,转化率为1.39%。可以分析访问量高的商品,吸引用户将其收藏、加购物车,以提高后续转化率等。


②浏览—加购物车—购买路径占比19.9%,转化率为10.0%,一般为提前加入购物车或者多件商品共同购买。此路径转化率较高,可以分析最后成交商品在用户加入购物车后的状态,是自身降价还是参与活动促销等;还可以根据同一订单内的商品分析其联系,作为商品推荐的一个参考依据。


③浏览—收藏—购买路径占比6.9%,转化率为8%。可以在收藏界面添加商品动态,或者向用户推送商品补货信息,提高商品转化率。


④浏览—加购—收藏—购买路径占比1%,转化率为14.9%。既加购又收藏可说明此类商品比较受用户欢迎,可以挖掘商品共性,扩大其他相似产品的曝光度。


**5.2 用户消费分析**


* 用户付费率达到67.94%,所有用户平均消费次数为2次。
* 针对付费用户来看,用户平均消费次数为3次,其中购买次数为1次的用户数量最多,大约有88%的用户购买次数在5次以内,购买次数在10次以内的用户占总付费用户的98%。
* 用户复购率为66%,用户复购平均间隔1.2天,有超过50%的用户在同一天内产生多笔交易。
* 通过比对商品大类浏览top10和商品大类销售top10可知,存在某些商品浏览量高但成交量相对较低,对此应该分析用户流失原因,对症下药;对于成交量高但浏览量相对较低的商品,是否应该考虑增加商品的曝光率等等。
* 观察得知商品大类4159072和1464116商品转换率较高,分别达到了10%和5%以上,应该进一步分析这些商品成交率高的原因,是否能推广到其它商品。
* 在不同日期的不同时间点,商品销量具有不同的表现,可进一步对商品按照时间维度进行挖掘分析,更加精准地投放商品广告。
* 商品发生购买前产生的用户行为在100次之内,可以进一步简化用户的购买流程,提升用户体验。


**5.3 用户价值分析**


此部分将用户分为四个维度,针对不同维度的用户应当采取不同的运营策略:


* 针对重要客户(近期有付费且经常付费),即忠实用户,他们可能不需要额外的刺激消费,可以关注其售后体验等,提升用户的消费满意度;
* 针对保持客户(经常付费但是已经在很久之前了),曾经的忠实用户面临流失的风险,对其可以进行适当的提醒,如消息推送,还可以了解其离开的原因,以采取相应措施。
* 针对发展客户(近期有付费但是次数很少,或者只有一次付费),即新用户或者黏性较低的用户,我们的目标是刺激他们消费,可以通过开展促销活动等措施。
* 针对挽留客户(很少付费而且在很久之前),即流失用户,需要挽回并刺激其消费。从另一方面来看,可以尝试寻找用户流失的原因,通过反馈来调整我们的产品。


### 最后


**在学习python中有任何困难不懂的可以微信扫描下方CSDN官方认证二维码加入python交流学习  
 多多交流问题,互帮互助,这里有不错的学习教程和开发工具。**


**一、Python所有方向的学习路线**

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

![img](https://img-blog.csdnimg.cn/1d40facda2b84990b8e1743f5487d455.png)  
![img](https://img-blog.csdnimg.cn/0fc11d4a31bd431dbf124f67f1749046.png)

**二、Python必备开发工具**

工具都帮大家整理好了,安装就可直接上手!![img](https://img-blog.csdnimg.cn/ff266f529c6a46c4bc28e5f895dec647.gif#pic_center)

**三、最新Python学习笔记**

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

![img](https://img-blog.csdnimg.cn/6d414e9f494742db8bcc3fa312200539.png)

**四、Python视频合集**

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

![img](https://img-blog.csdnimg.cn/a806d9b941c645858c61d161aec43789.png)

**五、实战案例**

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。![img](https://img-blog.csdnimg.cn/a353983317b14d3c8856824a0d6186c1.png)

**六、面试宝典**

![在这里插入图片描述](https://img-blog.csdnimg.cn/97c454a3e5b4439b8600b50011cc8fe4.png)

![在这里插入图片描述](https://img-blog.csdnimg.cn/111f5462e7df433b981dc2430bb9ad39.png)

###### **简历模板**![在这里插入图片描述](https://img-blog.csdnimg.cn/646863996ac44da8af500c049bb72fbd.png#pic_center)




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
淘宝用户行为数据是一个十分重要的资源,它可以帮助淘宝理解用户的购买偏好、增加用户留存率以及提升销售额。为了能够更好地利用这些数据,xgboost是一种常用的机器学习算法。 xgboost是一种基于梯度提升树的算法,它能够处理大规模数据集并在目标变量存在复杂关系的情况下提供高准确性的预测。对于淘宝用户行为数据,xgboost可以进行如下应用: 1. 用户购买行为预测:通过分析历史购买记录、浏览记录、搜索关键词等行为数据,xgboost可以建立一个预测模型,预测用户是否会购买某个商品。这可以帮助淘宝提前采取营销策略,增加用户转化率。 2. 用户留存率分析:通过分析用户的浏览记录、收藏商品记录、购买记录等行为数据,xgboost可以建立一个分类模型,预测用户是否会在未来一段时间内继续使用淘宝。这有助于淘宝制定个性化的用户留存手段,提高用户忠诚度。 3. 用户推荐系统:通过分析用户的历史浏览、购买记录以及其他用户的购买行为,xgboost可以建立推荐模型,为用户推荐可能感兴趣的商品。这可以提升淘宝的交易量和用户体验。 4. 评估商品销售情况:通过分析订单记录、用户评价、广告点击数据等,xgboost可以建立回归模型,预测商品的销售量。这为淘宝提供了更好的销售策略和库存管理方法。 总之,淘宝用户行为数据在xgboost算法的支持下,可以帮助淘宝提高用户购买转化率、用户留存率以及商品销售情况,为淘宝提供更好的决策依据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值