Python 实现 ZeroMQ 的三种基本工作模式

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

说到“请求-应答”模式,不得不说的就是它的消息流动模型。消息流动模型指的是该模式下,必须严格遵守“一问一答”的方式。

发出消息后,若没有收到回复,再发出第二条消息时就会抛出异常。同样的,对于 Rep 也是,在没有接收到消息前,不允许发出消息。

基于此构成“一问一答”的响应模式。

server:

-- coding=utf-8 --

import zmq

context = zmq.Context()

socket = context.socket(zmq.REP)

socket.bind(“tcp://*:5555”)

while True:

message = socket.recv()

print(“Received: %s” % message)

socket.send(“I am OK!”)

client:

-- coding=utf-8 --

import zmq

context = zmq.Context()

socket = context.socket(zmq.REQ)

socket.connect(“tcp://localhost:5555”)

socket.send(‘Are you OK?’)

response = socket.recv()

print(“response: %s” % response)

Publish-Subscribe 模式:

“发布-订阅”模式下,“发布者”绑定一个指定的地址,例如“192.168.10.1:5500”,“订阅者”连接到该地址。该模式下消息流是单向的,只允许从“发布者”流向“订阅者”。且“发布者”只管发消息,不理会是否存在“订阅者”。一个“发布者”可以拥有多个订阅者,同样的,一个“订阅者”也可订阅多个发布者。

虽然我们知道“发布者”在发送消息时是不关心“订阅者”的存在于否,所以先启动“发布者”,再启动“订阅者”是很容易导致部分消息丢失的。那么可能会提出一个说法“我先启动‘订阅者’,再启动‘发布者’,就能解决这个问题了?”

对于 ZeroMQ 而言,这种做法也并不能保证 100% 的可靠性。在 ZeroMQ 领域中,有一个叫做“慢木匠”的术语,就是说即使我是先启动了“订阅者”,再启动“发布者”,“订阅者”总是会丢失第一批数据。因为在“订阅者”与端点建立 TCP 连接时,会包含几毫秒的握手时间,虽然时间短,但是是存在的。再加上 ZeroMQ 后台 IO 是以一部方式执行的,所以若不在双方之间施加同步策略,消息丢失是不可避免的。

关于“发布-订阅”模式在 ZeroMQ 中的一些其他特点:

  1. 公平排队,一个“订阅者”连接到多个发布者时,会均衡的从每个“发布者”读取消息,不会出现一个“发布者”淹没其他“发布者”的情况。

  2. ZMQ3.0 以上的版本,过滤规则发生在“发布方”。 ZMQ3.0 以下的版本,过滤规则发生在“订阅方”。其实也就是处理消息的位置。

server:

-- coding=utf-8 --

import zmq

import time

context = zmq.Context()

socket = context.socket(zmq.PUB)

socket.bind(“tcp://*:5555”)

for i in range(10):

print(‘send message…’ + str(i))

socket.send(‘message’ + str(i))

time.sleep(1)

client:

-- coding=utf-8 --

import zmq

context = zmq.Context()

socket = context.socket(zmq.SUB)

socket.connect(“tcp://localhost:5555”)

socket.setsockopt(zmq.SUBSCRIBE, ‘’)

while True:

response = socket.recv()

print(“response: %s” % response)

Parallel Pipeline 模式:

在说明“管道模式”前,需要明确的是在 ZeroMQ 中并没有绝对的服务端与客户端之分,所有的数据接收与发送都是以连接为单位的,只区分 ZeroMQ 定义的类型。就像套接字绑定地址时,可以使用 bind,也可以使用 connect,只是通常我们将理解中的服务端 bind 到一个地址,而理解中的客户端 connec 到该地址。

“管道模式”一般用于任务分发与结果收集,由一个任务发生器来产生任务,“公平”的派发到其管辖下的所有 worker,完成后再由结果收集器来回收任务的执行结果。

整体流程比较好理解,worker 连接到任务发生器上,等待任务的产生,完成后将结果发送至结果收集器。如果要以客户端服务端的概念来区分,这里的任务发生器与结果收集器是服务端,而 worker 是客户端。

前面说到了这里任务的派发是“公平的”,因为内部采用了 LRU 的算法来找到最近最久未工作的闲置 worker。但是公平在这里是相对的,当任务发生器启动后,第一个连接到它的 worker 会在一瞬间承受整个任务发生器产生的 tasks。

总结来说由三部分组成,push 进行数据推送,work 进行数据缓存,pull 进行数据竞争获取处理。区别于 Publish-Subscribe 存在一个数据缓存和处理负载。

当连接被断开,数据不会丢失,重连后数据继续发送到对端。

server:

-- coding=utf-8 --

import zmq

import time

context = zmq.Context()

socket = context.socket(zmq.PUSH)

socket.bind(“tcp://*:5557”)

for i in range(10):

socket.send(‘message’ + str(i))

没启 worker 时不会发消息

print(‘send message…’ + str(i))

time.sleep(1)

work:

-- coding=utf-8 --

import zmq

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值