kalman滤波python实现——基于维纳退化模型(1)

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 代码实现 :
import matplotlib.pyplot as plt
from math import pi
import numpy as np
from numpy import log, exp, sqrt
from numpy.random import normal, randn

def kalman_filter_for_weiner_process(t, X):
    ''''X is an array'''
    n_samples = len(X)
    _size = n_samples + 5
    sigma2 = 10                           # difussion coef
    Q = 10                                # drift noise variation
    K = np.zeros(_size)
    P = np.ones([_size,_size])  # P0 = 1

    λ_hat = np.zeros(_size) # a0 = 1
    y_pred = np.zeros(_size)

    for i in np.arange(0, n_samples):
        if i == 0:
            y_pred[i] = X[i]
        else:    
           # Prediction (expectation)
            P[i][i-1] = P[i-1][i-1] + Q 
            K[i] = (t[i] - t[i-1])**2 * P[i][i-1] + sigma2 * (t[i] - t[i-1]) # kalman 增益
            λ_hat[i] = λ_hat[i-1] + P[i][i-1] * (t[i] - t[i-1]) * (X[i] - X[i-1] - λ_hat[i-1] * (t[i] - t[i-1])) / K[i]

            # Correction (variance)
            P[i][i] = P[i][i-1] - P[i][i-1] * (t[i] - t[i-1])**2 / K[i] * P[i][i-1]

            # 基于更新后的λ_hat进行下一步的预测
            y_pred[i] = y_pred[i-1] + λ_hat[i] * (t[i] - t[i-1])
            
        print(f"λ_hat:{λ_hat[i]},P:{P[i][i]}")

    plt.scatter(t,X, color = 'blue')
    plt.plot(t,X, color = 'blue', label = 'actual')
    plt.plot(t, y_pred[:len(t)], color = 'red', label='kalman')
    plt.scatter(t, y_pred[:len(t)], color = 'red')
    print(y_pred)
    print(λ_hat)
    print(X)
    plt.legend()
    

# data
t = np.arange(1,15)
X = np.sin(np.arange(1,15))  * 100
kalman_filter_for_weiner_process(t, X)
  • 输出结果:​​​​​​​​​​​​​​

改进的kalman滤波

  • 算法细节:

  • 代码实现:
import matplotlib.pyplot as plt
from math import pi
import numpy as np
from numpy import log, exp, sqrt
from numpy.random import normal, randn

def strong_tracking_kalman_filter_for_weiner_process(t, X):
    ''''X is an array'''
    n_samples = len(t)
    _size = n_samples + 5 
    print("n_samples:", n_samples)
    sigma2 = 10                           # difussion coef
    Q = 10                               # drift noise variation
    alpha, rho = 0.5, 0.5
    V = np.zeros(_size)
    gamma = np.zeros(_size)
    B = np.zeros(_size)
    C = np.zeros(_size)
    v = np.zeros(_size)
    

    K = np.zeros(_size)
    P = np.ones([_size,_size])  # P0 = 1

    λ_hat = np.zeros(_size) # a0 = 0
    y_pred = np.zeros(_size)

    for i in np.arange(0, n_samples):
        if i == 0:
            y_pred[i] = X[i]
        else:    
            gamma[i] = X[i] - X[i-1] - λ_hat[i-1] * (t[i] - t[i-1])
            if i == 1:
                V[i] = gamma[i]**2
            elif i > 1:
                V[i] = (rho * V[i-1] + gamma[i]**2) / (1 + rho)
            B[i] = V[i] - Q * (t[i] - t[i-1])**2 - alpha * sigma2 * (t[i] - t[i-1])
            C[i] = P[i-1][i-1] * (t[i] - t[i-1])**2 - alpha * sigma2 * (t[i] - t[i-1])
            v0 = B[i] / C[i]
            if v0 >= 1:
                v[i] = v0
            else:
                v[i] = 1

            # Prediction (expectation)
            P[i][i-1] = v[i] * P[i-1][i-1] + Q 
            K[i] = (t[i] - t[i-1])**2 * P[i][i-1] + sigma2 * (t[i] - t[i-1]) # kalman 增益
            λ_hat[i] = λ_hat[i-1] + P[i][i-1] * (t[i] - t[i-1]) / K[i] * (X[i] - X[i-1] - λ_hat[i-1] * (t[i] - t[i-1])) 

            # Correction (variance)
            P[i][i] = P[i][i-1] - P[i][i-1] * (t[i] - t[i-1])**2 / K[i] * P[i][i-1]

            # 基于调整过后的λ_hat进行下一步的预测
            y_pred[i] = y_pred[i-1] + λ_hat[i] * (t[i] - t[i-1])

        print(f"λ_hat:{λ_hat[i-1]},P:{P[i][i]}")

    plt.plot(t, X, color = 'blue', label = 'actual')
    plt.scatter(t, X, color = 'blue')


### 最后

> **🍅 硬核资料**:关注即可领取PPT模板、简历模板、行业经典书籍PDF。  
> **🍅 技术互助**:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。  
> **🍅 面试题库**:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。  
> **🍅 知识体系**:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值