(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- 代码实现 :
import matplotlib.pyplot as plt
from math import pi
import numpy as np
from numpy import log, exp, sqrt
from numpy.random import normal, randn
def kalman_filter_for_weiner_process(t, X):
''''X is an array'''
n_samples = len(X)
_size = n_samples + 5
sigma2 = 10 # difussion coef
Q = 10 # drift noise variation
K = np.zeros(_size)
P = np.ones([_size,_size]) # P0 = 1
λ_hat = np.zeros(_size) # a0 = 1
y_pred = np.zeros(_size)
for i in np.arange(0, n_samples):
if i == 0:
y_pred[i] = X[i]
else:
# Prediction (expectation)
P[i][i-1] = P[i-1][i-1] + Q
K[i] = (t[i] - t[i-1])**2 * P[i][i-1] + sigma2 * (t[i] - t[i-1]) # kalman 增益
λ_hat[i] = λ_hat[i-1] + P[i][i-1] * (t[i] - t[i-1]) * (X[i] - X[i-1] - λ_hat[i-1] * (t[i] - t[i-1])) / K[i]
# Correction (variance)
P[i][i] = P[i][i-1] - P[i][i-1] * (t[i] - t[i-1])**2 / K[i] * P[i][i-1]
# 基于更新后的λ_hat进行下一步的预测
y_pred[i] = y_pred[i-1] + λ_hat[i] * (t[i] - t[i-1])
print(f"λ_hat:{λ_hat[i]},P:{P[i][i]}")
plt.scatter(t,X, color = 'blue')
plt.plot(t,X, color = 'blue', label = 'actual')
plt.plot(t, y_pred[:len(t)], color = 'red', label='kalman')
plt.scatter(t, y_pred[:len(t)], color = 'red')
print(y_pred)
print(λ_hat)
print(X)
plt.legend()
# data
t = np.arange(1,15)
X = np.sin(np.arange(1,15)) * 100
kalman_filter_for_weiner_process(t, X)
- 输出结果:
改进的kalman滤波
- 算法细节:
- 代码实现:
import matplotlib.pyplot as plt
from math import pi
import numpy as np
from numpy import log, exp, sqrt
from numpy.random import normal, randn
def strong_tracking_kalman_filter_for_weiner_process(t, X):
''''X is an array'''
n_samples = len(t)
_size = n_samples + 5
print("n_samples:", n_samples)
sigma2 = 10 # difussion coef
Q = 10 # drift noise variation
alpha, rho = 0.5, 0.5
V = np.zeros(_size)
gamma = np.zeros(_size)
B = np.zeros(_size)
C = np.zeros(_size)
v = np.zeros(_size)
K = np.zeros(_size)
P = np.ones([_size,_size]) # P0 = 1
λ_hat = np.zeros(_size) # a0 = 0
y_pred = np.zeros(_size)
for i in np.arange(0, n_samples):
if i == 0:
y_pred[i] = X[i]
else:
gamma[i] = X[i] - X[i-1] - λ_hat[i-1] * (t[i] - t[i-1])
if i == 1:
V[i] = gamma[i]**2
elif i > 1:
V[i] = (rho * V[i-1] + gamma[i]**2) / (1 + rho)
B[i] = V[i] - Q * (t[i] - t[i-1])**2 - alpha * sigma2 * (t[i] - t[i-1])
C[i] = P[i-1][i-1] * (t[i] - t[i-1])**2 - alpha * sigma2 * (t[i] - t[i-1])
v0 = B[i] / C[i]
if v0 >= 1:
v[i] = v0
else:
v[i] = 1
# Prediction (expectation)
P[i][i-1] = v[i] * P[i-1][i-1] + Q
K[i] = (t[i] - t[i-1])**2 * P[i][i-1] + sigma2 * (t[i] - t[i-1]) # kalman 增益
λ_hat[i] = λ_hat[i-1] + P[i][i-1] * (t[i] - t[i-1]) / K[i] * (X[i] - X[i-1] - λ_hat[i-1] * (t[i] - t[i-1]))
# Correction (variance)
P[i][i] = P[i][i-1] - P[i][i-1] * (t[i] - t[i-1])**2 / K[i] * P[i][i-1]
# 基于调整过后的λ_hat进行下一步的预测
y_pred[i] = y_pred[i-1] + λ_hat[i] * (t[i] - t[i-1])
print(f"λ_hat:{λ_hat[i-1]},P:{P[i][i]}")
plt.plot(t, X, color = 'blue', label = 'actual')
plt.scatter(t, X, color = 'blue')
### 最后
> **🍅 硬核资料**:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
> **🍅 技术互助**:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
> **🍅 面试题库**:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
> **🍅 知识体系**:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618317507)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**