2024年大数据最新【C++进阶】map和set(1),2024年大数据开发面试心得

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

🍁 前言

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个
共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中
插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此
map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。


🍁 1. AVL树

🍂 1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

  • 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在

O

(

l

o

g

2

n

)

O(log_2 n)

O(log2​n),搜索时间复杂度O(

l

o

g

2

n

log_2 n

log2​n)。


🍂 1.2 AVL树节点的定义

template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: \_pLeft(nullptr)
		, \_pRight(nullptr)
		, \_pParent(nullptr)
		, \_data(data), \_bf(0)
	{}
	
	AVLTreeNode<T>\* _pLeft; // 该节点的左孩子
	AVLTreeNode<T>\* _pRight; // 该节点的右孩子
	AVLTreeNode<T>\* _pParent; // 该节点的双亲
	T _data;
	int _bf; // 该节点的平衡因子
};


🍂 1.3 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

在这里插入图片描述
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:
-1,0, 1, 分以下两种情况:

  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可

此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2

  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
    成0,此时满足AVL树的性质,插入成功
  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
    新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
    行旋转处理
pair<Node\*,bool> Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)//根节点为空时先new一个新节点
		{
			_root = new Node(kv);
			return make\_pair(_root, true);
		}
 
		Node\* cur = _root;
		Node\* parent = nullptr;
		//先利用while循环去找cur的空位
		while (cur)
		{
			if (kv.first > cur->_kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kv.first < cur->_kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make\_pair(cur, false);
			}
		}
		//将cur插入到相应位置
		cur = new Node(kv);
		Node\* newnode = cur;//用一个newnode记录一下新节点用以返回
		if (kv.first > parent->_kv.first)
		{
			parent->_right = cur;//注意三叉链的链接逻辑顺序,等号左右方向不能反,先把cur链接到父节点的右边
			cur->_parent = parent;//然后再去把父指针知道父节点
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
 
		//进行旋转调整
		//while(cur!=\_root)
		while (parent)
		{
			//1.进入循环先对平衡因子进行调整
			if (cur == parent->_right)
			{
				parent->_bf++;
			}
			else
			{
				parent->_bf--;
			}
 
			//分三种情况向上走
			if (parent->_bf == 0)//平衡因子等于0不需要调整
			{
				//为什么不需调整
				//因为等于0的话,说明底层子树高度不平衡,添加进入新元素后平衡了,只要平衡了高度并没发生变化,不会影响上面的父节点
				break;
			}
			else if (parent->_bf == -1 || parent->_bf == 1)
			{
				//平衡因子等于-1,说明插入新节点后子树的高度不平衡了,需要继续往上迭代查看父节点是否还满足平衡节点
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				if (parent->_bf == -2)//父节点等于-2,说明左边高,触发右旋的情况
				{
					if (cur->_bf == -1)//cur节点等于-1,说明在cur的左边更高,触发右单旋的情况
					{
						RotateR(parent);
					}
					else//cur等于-1,说明在cur的右边更高,触发左右双旋
					{
						RotateLR(parent);
					}
				}
				else//父节点等于1,说明右边更高,触发左旋的情况
				{
					if (cur->_bf == 1)//cur节点等于1时,说明在cur的右边更高,触发右单旋的情况
					{
						RotateL(parent);
					}
					else//cur等于-1,说明在cur的左边更高,触发右左双旋
					{
						RotateRL(parent);
					}
				}
				//思考:为什么上面在传参数的时候,都是传parent的节点呢?这样的好处是什么呢
 
				break;//调整完成后break退出循环
				//这里为什么调整完成过后就可以退出,通过旋转调整平衡因子后,parent节点的平衡因子都为0了,调整过后不需要再向上继续查找了
			}
			else
			{
				assert(false);
			}
		}
		return make\_pair(newnode,true);
	}


🍂 1.4 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

  • 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树

如果是根节点,旋转完成后,要更新根节点

如果是子树,可能是某个节点的左子树,也可能是右子树

void RotateR(Node\* parent)//右单旋
	{
		Node\* subL = parent->_left;
		Node\* subLR = subL->_right;
 
		parent->_left = subLR;
		if (subLR != nullptr)//注意:这里一定要判断不为空的,因为下面可能会出现空指针的解引用
		{
			subLR->_parent = parent;
		}
		subL->_right = parent;
		Node\* parentParent = parent->_parent;//一定要在改变链接关系之前把这个指针存下来
		parent->_parent = subL;
		
		//if (parentParent == nullptr)或者采用这个条件也是可以的
		if(parent==_root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			//这里注意:parent还有父母时,链接之前需要注意判断到底是右孩子还是左孩子
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;
 
			subL->_parent = parentParent;//最后还要把父指针关系链接上
		}
 
		parent->_bf = subL->_bf = 0;//最后右单旋完成后平衡因子都要修改成0
	}

  • 新节点插入较高右子树的右侧—右右:左单旋

在这里插入图片描述

和右单旋近似,可以参考代码

void RotateL(Node\* parent)
	{
		Node\* subR = parent->_right;
		Node\* subRL = subR->_left;
 
		//先把subR的左孩子赋值给parent的右节点
		parent->_right = subRL;
		if (subRL != nullptr)//注意一定要判断是否为空的情况
		{
			subRL->_parent = parent;//然后链接parent指针
		}
 
		//然后subR的左节点链接上parent
		subR->_left = parent;
		Node\* parentParent = parent->_parent;//提前记录
		parent->_parent = subR;
		//if (parentParent == nullptr)
		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
				parentParent->_left = subR;
			else
				parentParent->_right = subR;
 
			subR->_parent = parentParent;
		}
 
		parent->_bf = subR->_bf = 0;
	}

  • 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再
考虑平衡因子的更新。

请添加图片描述

void RotateLR(Node\* parent)
	{
		Node\* subL = parent->_left;
		Node\* subLR = subL->_right;
		int bf = subLR->_bf;
		RotateL(parent->_left);//先进行左旋,并注意旋转点为父节点的左节点
		RotateR(parent);//再进行右旋,此时旋转点为父节点
 
		if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}//注意这里处理完成过后sunRL的平衡因子一定都是等于0的
		else
		{
			assert(false);
		}
	}

  • 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述

void RotateRL(Node\* parent)
	{
		Node\* subR = parent->_right;
		Node\* subRL = subR->_left;
		int bf = subRL->_bf;//注意:需要提前存subRL的平衡因子,因为旋转可能引起改变
		//subRL的平衡因子是双旋的关键节点
 
		RotateR(parent->_right);//先进行右旋,并注意旋转点为父节点的右节点
		RotateL(parent);//再进行左旋,此时旋转点为父节点
 
		if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}//注意这里处理完成过后sunRL的平衡因子一定都是等于0的
		else
		{
			assert(false);
		}
	}

总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
    – 当pSubR的平衡因子为1时,执行左单旋
    – 当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
    – 当pSubL的平衡因子为-1是,执行右单旋
    – 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。


🍂 1.5 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    – 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    – 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    – 节点的平衡因子是否计算正确
void \_Inorder(Node\* root)//中序遍历打印每个节点
	{
		if (root == nullptr)
			return;
		\_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		\_Inorder(root->_right);
	}
	void Inorder()
	{
		\_Inorder(_root);
		cout << endl;
	}
 
	//验证是否为平衡二叉树
	//1.左子树高度与右子树高度差必须小于1
	int \_Height(Node\* root)//求树的高度函数
	{
		if (root == nullptr)
		{
			return 0;
		}
 
		int leftHeight = \_Height(root->_left);//递归去子问题求解
		int rightHeight = \_Height(root->_right);
 
		return rightHeight > leftHeight ? rightHeight + 1 : leftHeight + 1;
	}
	bool \_IsBalance(Node\* root)
	{
		if (root == nullptr)
		{
			return true;
		}
 
		int leftHeight = \_Height(root->_left);
		int rightHeight = \_Height(root->_right);
 
		// 2.检查一下每颗树的平衡因子是否正确
		if (rightHeight - leftHeight != root->_bf)
		{
			cout << "平衡因子异常:" << root->_kv.first << endl;
			return false;
		}
 
		return abs(rightHeight - leftHeight) < 2
			&& \_IsBalance(root->_left)
			&& \_IsBalance(root->_right);//分别递归到各自的左右子树再去检查
	}
	bool IsAVLTree()
	{
		return \_IsBalance(_root);
	}


🍂 1.6 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
样可以保证查询时高效的时间复杂度,即

l

o

g

2

(

N

)

log_2 (N)

log2​(N)。

但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。


🍂 1.7 AVL树的实现

AVLTree.hpp

//
// AVLTree.hpp
// AVLtree
//
// Created by 卜绎皓 on 2022/11/16.
//

#pragma once
#include<iostream>
#include<assert.h>
#include<string>
using namespace std;
 
 


![img](https://img-blog.csdnimg.cn/img_convert/caac61dace027beed73df399c5863077.png)
![img](https://img-blog.csdnimg.cn/img_convert/e8fec59eaae4ebcc5819df81c8b8a23c.png)
![img](https://img-blog.csdnimg.cn/img_convert/c066fabb7073b26594e79e9d51e963c8.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。




---


### 🍂 1.7 AVL树的实现


`AVLTree.hpp`



//
// AVLTree.hpp
// AVLtree
//
// Created by 卜绎皓 on 2022/11/16.
//

#pragma once
#include
#include<assert.h>
#include
using namespace std;

[外链图片转存中…(img-PoZey5a6-1715614800787)]
[外链图片转存中…(img-Y8Ed5vyW-1715614800787)]
[外链图片转存中…(img-mvCkrMc6-1715614800788)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

  • 12
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值