基于python爬虫二手房源数据可视化和房源推荐系统设计与实现(django框架)_房源智能推荐系统(1)

本文档介绍了基于Python爬虫技术和Django框架设计的二手房源数据可视化和房源推荐系统。研究内容包括爬虫设计、数据预处理、数据可视化、推荐系统构建以及时间序列分析,旨在提升用户购房体验。预期成果包括房源数据的高效爬取、可视化展示和个性化推荐。此外,还探讨了研究中可能遇到的风险和应对措施。
摘要由CSDN通过智能技术生成

八、论文(设计)写作提纲(以下是一个初步的提纲,具体写作时可以根据实际情况进行调整)

  1. 绪论:阐述研究背景和意义、国内外研究现状、研究目的和内容等;
  2. Python爬虫设计与实现:介绍爬虫的原理、设计思路和实现过程;
  3. 数据清洗与预处理:描述数据的清洗、转换和特征提取过程;
  4. 数据可视化实现:阐述数据可视化的原理、方法和实现过程;
  5. 房源推荐系统设计与实现:介绍推荐系统的架构、算法和实现过程;
  6. 时间序列分析与动态更新机制:探讨时间序列分析的方法和动态更新机制的原理及实现;
  7. 系统测试与性能分析:对系统进行测试并分析其性能;
  8. 结论与展望:总结研究成果和不足之处,展望未来的研究方向和应用前景。

九、主要参考文献

以下是本研究涉及的主要参考文献:

  1. 赵永辉. “基于Python的网络爬虫技术与应用.” 计算机科学, 2018.
  2. 王小川. “数据可视化原理与实践.” 清华大学出版社, 2020.
  3. 李航. “统计学习方法.” 清华大学出版社, 2019.
  4. Django官方文档. https://docs.djangoproject.com/
  5. 张三丰. “时间序列分析在房地产市场中的应用.” 经济研究, 2019.
  6. 周志华. “机器学习.” 清华大学出版社, 2016.
  7. Antonie Mladenic and Marko Grobelnik. “Feature Selection for Unbalanced Class Distribution and Naive Bayes.” In Proceedings of the Sixteenth International Conference on Machine Learning (ICML 1999), 1999.
  8. Sarwar, Badrul, et al. “Item-based Collaborative Filtering Recommendation Algorithms.” In Proceedings of the 10th International Conference on World Wide Web, 2001.
  9. Lops, Pasquale, et al. “Content-Based Recommender Systems: State of the Art and Trends.” In Recommender Systems Handbook, edited by Francesco Ricci, Lior Rokach, and Bracha Shapira, 2011.
  10. Aggarwal, Charu C., and C
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值