既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
平衡二叉树的插入
每当在二叉排序树中插入(或删除)一个结点时,首先要检查其插入路径上的结点是否因为此次操作而导致了不平衡。若导致了不平衡,则先找到路径上离插入结点最近的平衡因子的绝对值大于1的结点 A,再对以 A 为根的子树,在保持排序树特性的前提下,调整各结点的位置关系,使之重新达到平衡。
平衡二叉树的插入过程的前半部分与二叉排序树相同,但在新结点插入后,若造成查找路上的某个结点不再平衡,则需要做出相应的调整。可将调整的规律归纳为下列4种情况:
LL平衡旋转(右单旋转)
由于在结点A的左孩子(L)的左子树(L)上插入了新结点,A 的平衡因子由 1 增至 2 ,导致以 A 为根的子树失去平衡,需要一次向右的旋转操作,将 A 的左孩子 B 向右上旋转代替 A 成为根结点,将 A 结点向右下旋转成为 B 的右子树的根结点,而 B 的原右子树则作为 A 结点的左子树。
RR平衡旋转(左单旋转)
由于在结点 A 的右孩子®的右子树®上插入了新结点,A 的平衡因子由 −1 减至 −2,导致以 A 为根的子树失去平衡,需要一次向左的旋转操作。将 A 的右孩子 B 向左上旋转代替 A 成为根结点,将 A 结点向左下旋转成为 B 的左子树的根结点,而 B 的原左子树则作为 A 结点的右子树的。
LR平衡旋转(先左后右双旋转)
在 A 的左孩子(L)的右子树®上插入新结点,A 的平衡因子由1增至2,导致以 A 为根的子树失去平衡,需要进行两次旋转操作,先左旋转后右旋转。先将 A 结点的左孩子 B 的右子树的根结点 C 向左上旋转提升到 B 结点的位置,然后把该 C 结点向右上旋转提升到 A 结点的位置。
RL平衡旋转(先右后左双旋转)
由于在 A 的右孩子®的左子树(L)上插入新结点,A 的平衡因子由 −1减至 −2,导致以 A 为根的子树失去平衡,需要进行两次旋转操作,先右旋转后左旋转。先将 A 结点的右孩子 B 的左子树的根结点 C 向右上旋转提升到 B 结点的位置,然后把该 C 结点向左上旋转提升到 A 结点的位置。
平衡二叉树的构建
假设关键字序列为{6,1,2,5,4,3},通过该序列生成二叉排序树的过程如下:
第一步:创建一个空树
第二步:插入结点 6
第三步:插入结点 1
第四步:插入结点 2
第五步:LR旋转
第六步:插入结点 5
第七步:插入结点 4
第八步:LL旋转
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!