网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
-
Volume(大量):历史上全人类说过的话的数量大约是5EB,个人计算机目前容量单位为TB。
-
Velocity(高速):由于传输数据的量是非常庞大的,所以大数据在传输速率方面是高速的。
-
Variety(多样):以往的结构化数据相较于非结构化数据,非结构化数据越来越多,例如:音频,视频,地理信息等。对非结构化数据的处理能力要求较高。
-
Value(低价值密度):对复杂的,高效价值的数据进行提纯处理。
主要应用场景:
物流仓储、零售(纸尿布+啤酒)、旅游、商品广告推荐(推荐算法)、保险、金融、人工智能…
二、大数据开发岗位主要做什么?
数据采集【原始数据】
数据汇聚【经过清洗合并的可用数据】
数据转换和映射【经过分类,提取的专项主题数据】
数据应用 【提供api 智能系统 应用系统等】
- 大数据开发岗所处的位置以及相关其他岗位职责。
(图片来源于网络)
-
组织结构
三、大数据学习最全路线(推荐)
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**