大数据最全大数据面试专题 -- kafka(2),2024年最新互联网寒冬公司倒闭后

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

9、生产者写入分区的策略:

1、轮询负载策略:将数据循环写入分区中

2、基于hash的分区策略:根据hash的值进入不同的分区中

3、基于key写入分区:通过hash值与分区的个数继续取余,但是会导致数据倾斜。

4、消费者消费数分区分配策略:默认使用的是range分配。

10、leader选举:

在kafka集群中,controller是通过zk进行选举。在分区中的leader是通过ISR进行选举的。

11、kafka的读写流程:

kafka的读数据:

1、通过zk找出partition对应的leader,leader负责读取数据。

2、通过zk找出对应的消费者的offset

3、leader从对应的offset开始读取数据

4、提交offset

kafka的写数据

1、通过zk找到对应的partition对应的leader,leader负责写入数据

2、生产者向leader中写入数据

3、ISR中的fllower负责同步数据,并返回ack给leader。

4、返回ack给生产者。

12、kafka性能高的原因:

1、kafka采用的是一个sendfile的零拷贝技术

2、kafka是批量写入和读取的,一批批的写入数据,默认写入和读取的大小约64kb左右。是在分区级别上来说明的。

3、kafka写磁盘是顺序读取和写入的。

13、kafka中的文件删除策略:

默认是7天作为一个周期,删除的是整个文件,系统默认是1G生成一个文件,可以在配置文件中修改:

server.properties
14、kafka中分区的目的:

实现分布式,一个topic的数据量非常大,只存在同一个分区中压力会比较大。

15、在Kafka中是如何保证数据不丢失:

1、broker保证数据不丢失的原因是副本机制

2、生产者保证数据不丢失的原因是acks机制

3、消费者保证数据不丢失的原因是控制offset

16、zk在Kafka中作用:

1、负责选举controller

2、存储元数据信息

17、kafka的架构:

主节点:controller

从节点:borker

18、消费者和消费者组的关系:

1、消费者是负责订阅分区中的数据,然而对于消费者组来说是负责订阅topic的

2、一个消费者组中包含多个消费者,同一个消费者组中消费者可以订阅同一个topic

19、在Kafka中是如何保证数据的安全性

是通过kafka中的副本机制保证了数据的安全性。

20、怎么解决kafka数据量过大

1、可以增加topic的分区数,可以提高并行处理更多的数据

kafka-topics.sh --zookeeper localhost:2181 --alter --topic my-topic --partitions 10

2、增加副本因子,可以提高数据的冗余,提高数据的可靠性

bin/kafka-topics.sh --zookeeper localhost:2181 --alter --topic my-topic --replication-factor 3

3、调整消费者的并行度

4、优化生产者配置:

batch.size:增加批处理提高吞吐量

5、配置清理策列:根据数据保留策略配置日志保留时间和日志大小,定期清理旧数据

6、扩大kafka集群的规模:增加broker节点的数量

21、在Kafka中生产者是如何保证数据不丢失的

通过acks机制保证数据不丢失。

22、kafka中是如何保证数据不重复的

在kafka中使用幂等性来保证数据不重复的,在发送数据的时候,会给数据定义一个编号ID,当下次传输数据的时候ID+1,将数据写入的时候会记住这个编号,如果下一条数据的ID与上一个数据的ID一致,那么说明数据重复,不写入,返回ack。

23、消费者出问题,如何保证数据不丢失

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值