2024年最新机器学习 -- 初识决策树,2024年最新面试阿里巴巴运营岗位会问到哪些问题

跳槽是每个人的职业生涯中都要经历的过程,不论你是搜索到的这篇文章还是无意中浏览到的这篇文章,希望你没有白白浪费停留在这里的时间,能给你接下来或者以后的笔试面试带来一些帮助。

也许是互联网未来10年中最好的一年。WINTER IS COMING。但是如果你不真正的自己去尝试尝试,你永远不知道市面上的行情如何。这次找工作下来,我自身感觉市场并没有那么可怕,也拿到了几个大厂的offer。在此进行一个总结,给自己,也希望能帮助到需要的同学。

面试准备

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

面试准备根据每个人掌握的知识不同,准备的时间也不一样。现在对于前端岗位,以前也许不是很重视算法这块,但是现在很多公司也都会考。建议大家平时有空的时候多刷刷leetcode。算法的准备时间比较长,是一个长期的过程。需要在掌握了大部分前端基础知识的情况下,再有针对性的去复习算法。面试的时候算法能做出来肯定加分,但做不出来也不会一票否决,面试官也会给你提供一些思路。

2. 决策树的优点

3. 决策树解决问题的一般方法

4. 决策树的3个步骤

5. 决策树的特点

二、决策树建模与学习

1. 什么是决策树

2. 决策树与if-then规则

3. 如何学习一个决策树

三、特征选择

1. 什么是特征选择

2. 熵

3. 条件熵

4. 信息增益

5. ID3算法

6. 信息增益比

四、决策树生成

1. ID3算法

五、决策树的剪枝(Decision tree pruning)

1. 理想的决策树

2. 决策树面临的问题

3. 解决方法:剪枝

4. 判断剪枝的好坏

5. 决策树剪枝算法

6. CART算法

总结


一、概述

====

决策树是一种典型的分类方法

首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。

本质上决策树是通过一系列规则对数据进行分类的过程。

1. 分类问题步骤


(1)模型构建(归纳)通过对训练集合的归纳,建立分类模型。

(2)预测应用(推论)建立的分类模型,对测试集合进行测试。

2. 决策树的优点


(1)推理过程容易理解,决策推理过程可以表示成If Then形式;

(2)推理过程完全依赖于属性变量的取值特点;

(3)可自动忽略目标变量没有贡献的属性变量,也为判断属性变量的重要性,减少变量的数目提供参考。

3. 决策树解决问题的一般方法


4. 决策树的3个步骤


  1. 如何确定每个分支节点,即选择特征

  2. 如何建立决策树,即决策树的生成

  3. 如何避免过拟合,即决策树的剪枝

5. 决策树的特点


  1. 叶子节点是结论

  2. 树的路径唯一确定了一个样例的判断过程

  3. 非叶子节点是特征

二、决策树建模与学习

==========

1. 什么是决策树


分类决策树选择器是树形结构,用于对样例分类,决策树的基本组成部分:决策结点(内部节点)、分支和叶子。

结点 – 内部节点: 特征和属性

– 叶子节点:分类

有向边  – 特征的不同取值

决策树中最上面的结点称为根结点。是整个决策树的开始。

每个分支是一个新的决策结点,或者是树的叶子。

每个决策结点代表一个问题或者决策.通常对应待分类对象的属性。

每个叶结点代表一种可能的分类结果

在沿着决策树从上到下的遍历过程中,在每个结点都有一个测试。对每个结点上问题的不同测试输出导致不同的分枝,最后会达到一个叶子结点。这一过程就是利用决策树进行分类的过程,利用若干个变量来判断属性的类别。

2. 决策树与if-then规则


从根节点开始对实例的每个特征进行测试,根据结果将其分支,递归的测试分配,直到叶子节点,从而构造了决策树。

决策树分类器的实质就是一系列的if-then规则

路径  —  规则

内部节点 —  判定规则

叶子节点 — 决策结论

****(1)性质:****互斥且完备(即:每个实例都是有且仅有一条路径或规则覆盖。)

(2)特点:

特征空间被划分为不相交的单元或区域。

条件概率分布: 在每个单元中定义的一个类的概率分布。

每个叶节点的条件概率都趋向于具有较高概率的一类。

当决策树进行分类时,该节点的实例被强制归入具有高条件概率的类别。

(3)例子:

(每个矩形是一个单元,假设只有正类和负类,判断条件概率大的就属于该类)

3. 如何学习一个决策树


对于数据集有n个特征,yi对应每个样例的类标签,N为容量

学习目标:构造一个决策树模型,通过训练实例对样本进行正确的分类

实质:从训练数据中归纳出一系列的if-then规则

目的: 构建与训练数据不一致程度较低、泛化能力较好的决策树。对未知数据有较好的预测,且训练精确度好

损失函数: (通常)正则化极大似然函数,使损失函数最小。

从所有候选中选择最优决策树是n-p难问题。在现实中,决策树学习通常采用一种启发式方法,即局部优化。

方法: 选取当前条件下的最优特征作为划分规则,即局部最优特征。主要有自顶向下,贪婪的搜索方法

算法步骤:

(1)建立根节点(选择最佳特征)

(2)对于每个分支确定下一个特征,从而对节点进行划分

(3)确立下一个特征,递归的方法构造决策树

决策树学习算法包括:

(1)特征选择

(2)决策树生成

(3)决策树修剪(避免过拟合)

决策树: 一个条件概率分布。不同的决策树对应不同复杂度的概率模型。

决策树生成: 模型的局部选择(考虑局部优化)

决策树剪枝: 模型的全局选择(考虑全局优化)

三、特征选择

======

1. 什么是特征选择


特征选择: 选择能够对训练数据进行分类的特征。决定使用哪个特征来划分特征空间。如果一个特征分类的结果与随机分类的结果相似,那么这个特征就不能进行分类。

我们如何选择最好的特性? 特征选择准则:信息增益

哪一个特征最好?  它会生成最小损失的树; 启发式:选择产生“最纯粹”节点的特性

策略: 选择能够获得最大信息增益的特性

2. 熵


引入‘熵’的概念,看下图哪一个信息量更大?

左边图信息量更大,因为它有混合的,不确定性更改可以帮助我们更好的分类

熵越大,不确定性越大。

例子:在数据集中,我们有四个特性和两个目标类。在15个实例中,9个分类为是,其余为否有一些方法可以选择特性。如:

:用于测量随机变量的不确定性。熵越大,不确定性越大。

当只有两个特征,变化为二项分布

3. 条件熵


如果是多个特征 --> 引入条件熵 类似于联合概率密度,又叫经验熵或经验条件熵。

4. 信息增益


有了熵和经验熵 --> 信息增益

表示:以某特征划分数据集前后的熵的差值

在训练集D上特征A的信息增益g(D,A)表示为D的熵H(D)和条件熵H(D|A)的差值。

因此,特征选择的方法就是要使用信息增益的IG3算法,选择最小信息增益的特征。

5. ID3算法


使用IG来确定节点特征。

定义变量:

D: 训练数据  |D|:样例的总个数

K: 总共的类别,Ck分别表示每个类,|Ck|表示每个类对应的个数

假设特征A有n个值,则将D划分为{D1,D2,… Dn}子集,每个子集中有不同类Dik

算法表示:

输入:训练集D和特征A

输出:在训练集D上,特征A的信息增益g(D, A)

  1. 计算训练集D的熵H(D)

  2. 计算特征A的条件熵 H(D,A)

  3. 计算信息增益g(D, A) = H(D) - H(D,A)

紧跟潮流

大前端和全栈是以后前端的一个趋势,懂后端的前端,懂各端的前端更加具有竞争力,以后可以往这个方向靠拢。

这边整理了一个对标“阿里 50W”年薪企业高级前端工程师成长路线,由于图片太大仅展示一小部分

开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值