Vue
-
什么是MVVM?
-
mvvm和mvc区别?它和其它框架(jquery)的区别是什么?哪些场景适合?
-
组件之间的传值?
-
Vue 双向绑定原理
-
描述下 vue 从初始化页面–修改数据–刷新页面 UI 的过程?
-
虚拟 DOM 实现原理
-
Vue 中 key 值的作用?
-
Vue 的生命周期
-
Vue 组件间通信有哪些方式?
-
vue 中怎么重置 data?
-
组件中写 name 选项有什么作用?
-
Vue 的 nextTick 的原理是什么?
-
Vuex 有哪几种属性?
需要快速收敛,训练复杂网络时;适合处理非平稳目标 - 对于RNN效果很好
7. Adam:是RMSProp和Momentum的结合,对梯度和学习率都用了滑动平均,还有一个纠偏,优点主要在于经过偏差校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。需要快速收敛,训练复杂网络时;善于处理稀疏梯度和处理非平稳目标的优点,也适用于大多非凸优化 - 适用于大数据集和高维空间
二、CNN经典结构
1. AlexNet:采用ReLU作为非线性的激活函数、利用多个(2个)GPU同时训练、使用数据增强来提高模型的准确率防止过拟合、利用Dropout算法防止过拟合、LRN归一化层的使用
结构:CONV1 ->MAX POOL1 ->NORM1 ->CONV2 ->MAX POOL2 ->NORM2 ->CONV3 ->CONV4 ->CONV5->Max POOL3 ->FC6->FC7 ->FC8
2. VGG:16~19层 卷积核更小,层数更深
每组卷积都使用3x3的卷积核原因:一方面可以减少参数,另一方面相当于进行了更多的非线性映射,可以增加网络的拟合/表达能力
params计算params=(本层卷积核长*宽*上层卷积核厚)*本层卷积核厚 池化层没有params
3. GoogLeNet:22层 去除了全连接层(占据了网络的大部分参数),使用了全局均值池化,大大减小了参数量
1*1卷积层的作用:用于减少维度,还用于修正线性激活(relu)
(1)采用了模块化的结构(inception结构),方便增添和修改
(2)网络最后采用了average pooling来替代全连接,可将准确率提升百分之0.6
(3)虽然移除了全连接,但依然使用了Dropout
(4)为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度(辅助分类器)
4. ResNet:152层 plain网络随着网络加深,错误率升高
深层网络到了一定深度,准确率趋近饱和,而且继续加深的话会降低准确率,这称为退化问题,为了解决退化问题,提出了残差学习,如下图所示为残差块,假设本来是要学习H(x),加了一条恒等映射之后我们要学习的就是F(x) = H(x) - x
5. DenseNet:核心思想是建立不同层之间的连接,充分利用功能,进一步减少梯度消失的问题,加深网络不是问题,训练效果非常好。DenseNet包含两部分,dense block和transition layers
dense block中的每一层之间直接连接,不同层之间的直接连接增加了每层输入的多样性和提高了效率
每两个相邻的dense block之间的卷积+池化层被称为transition layers,其作用是通过下采样来改变特征图的大小。
当参数量相同的情况下,DenseNet比ResNet拥有更小的错误率;当验证错误率相同的时候,DenseNet比ResNet拥有更少的参数。
对于 DenseNet 抗过拟合的原因有一个比较直观的解释:神经网络每一层提取的特征都相当于对输入数据的一个非线性变换,而随着深度的增加,变换的复杂度也逐渐增加(更多非线性函数的复合)。相比于一般神经网络的分类器直接依赖于网络最后一层(复杂度最高)的特征,DenseNet 利用特征复用(feature reuse)综合利用浅层复杂度低的特征,因而更容易得到一个光滑的具有更好泛化性能的决策函数。
6. CNN应用:
语义分割:1.滑动窗口:将每一个小窗口通过cnn分类,缺点是计算量非常大2.全卷积网络:利用全是卷积层的网络来训练,通过填充保持图片的大小不变,最后分类得到语义分割后的图像,C为类别数量,在深通道(如64,128,256)逐层做卷积操作,非常消耗内存和计算量3.先下采样再上采样:对一小部分卷积层做原清晰度处理,经过一系列下采样,卷积,不使用全连接 上采样(去池化):最邻近去池化:将值赋给附近领域。钉床(Bed of Nails)去池化:将值赋给左上角元素,其余填充零
最大去池化(Max Unpooling):与Maxpooling相对应,将原值赋给对应位置元素,其余填充零,在网络的后半部分用去池化将相应元素放在池化前的相应位置,保存空间的上的结构,(池化后在低清晰度保留的元素与填充后的小块组成高清晰度的图像,这样可以保证最大池化的元素依然是在相应的位置)优点:分割的意义就在于找到不同类别的边界,最大池化后在低清晰度会丢失空间信息,去池化后会还原空间信息,帮助预测
7. 目标检测RCNN:
R-CNN是用来识别一个图片中的若干张物体的方法,采用提取框,对每个框提取特征、图像分类、 非极大值抑制四个步骤进行目标检测
RCNN 算法原理:Selective Search 生成候选框,候选框区域缩放到统一大小,使用 CNN 对每个候选框提取特征,提取出特征后使用 SVM 进行分类,通过非极大值抑制输出结果
Vue
-
什么是MVVM?
-
mvvm和mvc区别?它和其它框架(jquery)的区别是什么?哪些场景适合?
-
组件之间的传值?
-
Vue 双向绑定原理
-
描述下 vue 从初始化页面–修改数据–刷新页面 UI 的过程?
-
虚拟 DOM 实现原理
-
Vue 中 key 值的作用?
-
Vue 的生命周期
-
Vue 组件间通信有哪些方式?
-
vue 中怎么重置 data?
-
组件中写 name 选项有什么作用?
-
Vue 的 nextTick 的原理是什么?
-
Vuex 有哪几种属性?