- 右上角
- 左下角
- 右下角
现在,下一步就是把每一部分图像都交给图像分类器进行识别。这样,我们会得到每一部分图像中是否有行人的输出结果。如果有,便在原图像中标记该区域。输出结果类似这样:
这是开始尝试的一个很好的方法,但我们在寻求更加精确和准确的系统。它需要识别整个物体(或者是在本例中的人),因为仅仅识别物体的某些部分可能会导致灾难性的后果。
方法2:增加分割数量
先前的系统效果不错,但是我们还能如何改进呢?我们可以通过指数地增加我们输入系统的选框的数量来提高精确度。输出结果应该是这样:
这个方法有利有弊。尽管我们的解决方案看起来比原始的方法好一点点,但是它粗筛出很多的选框,实际结果基本一样。这是一个问题,我们需要一个更有条理的方法来解决这个问题问题。
方法3:展示结构严密的分区
为了用一种更有条理的方法构建我们的物体检测系统,我们可以按以下步骤操作:
**步骤1:**把图像划分成10x10的格子,如图所示: