2024年最新可能是最强的Python可视化神器之一,赶紧试试

1. Plotly

==========

Plotly 是一款用来做数据分析和可视化的在线平台,功能非常强大,可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。而且还是支持在线编辑,以及多种语言python、javascript、matlab、R等许多API。它在python中使用也很简单,直接用pip install plotly就可以了。推荐最好在jupyter notebook中使用,pycharm操作不是很方便。使用Plotly可以画出很多媲美Tableau的高质量图:

可能是最强的Python可视化神器,建议一试

plotly制图

我尝试做了折线图、散点图和直方图,首先导入库:

from plotly.graph_objs import Scatter,Layout

import plotlyimport plotly.offline as py

import numpy as np

import plotly.graph_objs as go

#setting offilne 离线模式

plotly.offline.init_notebook_mode(connected=True)

上面几行代码主要是引用一些库,plotly有在线和离线两种模式,在线模式需要有账号可以云编辑。我选用的离线模式,plotly设置为offline模式就可以直接在notebook里面显示了。

2. 制作折线图

=========

N = 100

random_x = np.linspace(0,1,N)

random_y0 = np.random.randn(N)+5

random_y1 = np.random.randn(N)random_y2 = np.random.randn(N)-5

#Create tracestrace0 = go.Scatter(

x = random_x,y = random_y0,mode = ‘markers’,

name = ‘markers’

)trace1 = go.Scatter(

x = random_x,y = random_y1,mode = ‘lines+markers’,

name = ‘lines+markers’

)trace2 = go.Scatter(

x = random_x,y = random_y2,mode = ‘lines’,

name = ‘lines’

)data = [trace0,trace1,trace2]py.iplot(data)

可能是最强的Python可视化神器,建议一试

折线图

随机设置4个参数,一个x轴的数字和三个y轴的随机数据,制作出三种不同类型的图。trace0是markers,trace1是lines和markers,trace3是lines。然后把三种图放在data这个列表里面,调用py.iplot(data)即可。

绘制的图片系统默认配色也挺好看的~

3. 制作散点图

=========

trace1 = go.Scatter(

y = np.random.randn(500),

mode = ‘markers’,

marker = dict(size = 16,

color = np.random.randn(500),

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值