2024年最新学会Python3模拟登录并爬取表格数据!excel高手也自叹不如!

本文讲述了作者在使用Python进行网络爬虫时遇到关于cookies和CSRF的问题,通过分析和调试,最终理解了cookies的作用,解决了CSRF令牌的匹配问题,并利用pandas和requests.Session实现数据抓取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python3模拟登录并爬取表格数据!做表格的高手也没我厉害

不管三七二十一, post 一下试试看

import requests

url = ‘https://www.ctic.org/crm?tdsourcetag=s_pctim_aiomsg’

headers = {‘user-agent’: 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ’

'AppleWebKit/537.36 (KHTML, like Gecko) ’

‘Chrome/74.0.3729.131 Safari/537.36’,

‘Host’: ‘www.ctic.org’}

data = {‘_csrf’: ‘SjFKLWxVVkkaSRBYQWYYCA1TMG8iYR8ReUYcSj04Jh4EBzIdBGwmLw==’,

‘CRMSearchForm[year]’: ‘2011’,

‘CRMSearchForm[format]’: ‘Acres’,

‘CRMSearchForm[area]’: ‘County’,

‘CRMSearchForm[region]’: ‘Midwest’,

‘CRMSearchForm[state]’: ‘IL’,

‘CRMSearchForm[county]’: ‘Adams’,

‘CRMSearchForm[crop_type]’: ‘All’,

‘summary’: ‘county’}

response = requests.post(url, data=data, headers=headers)

print(response.status_code)

果不其然,输出 400 ……我猜这就是传说中的 cookies 在搞鬼吗?《Python3网络爬虫实战》只看到第6章的我不禁有些

心虚 跃跃欲试呢!

首先,我搞不清 cookies 具体是啥,只知道它是用来维持会话的,应该来自于第一次 get ,搞出来看看先:

response1 = requests.get(url, headers=headers)

if response1.status_code == 200:

cookies = response1.cookies

print(cookies)

输出:

<RequestsCookieJar[

Nah,看不懂,不看不管,直接把它放到 post 里试试

response2 = requests.post(url, data=data, headers=headers, cookies=cookies)

print(response2.status_code)

还是 400 ,气氛突然变得有些焦灼,我给你 cookies 了啊,你还想要啥?!

突然,我发现一件事: post 请求所带的 data 中那个一开始就显得很可疑的 _csrf 我仿佛在哪儿见过?

那个我完全看不懂的 cookies 里好像就有一个 _csrf 啊!但是两个 _csrf 的值很明显结构不一样,试了一下把 data 里的 _csrf 换成 cookies 里的 _csrf 确实也不行。

但是我逐渐有了一个想法:这个两个 _csrf 虽然不相等,但是应该是匹配的,我刚刚的 data 来自浏览器, cookies 来自python程序,所以不匹配!

于是我又点开浏览器的DevTools,Ctrl+F搜索了一下,嘿嘿,发现了:

Python3模拟登录并爬取表格数据!做表格的高手也没我厉害

Python3模拟登录并爬取表格数据!做表格的高手也没我厉害

这三处。

第一处那里的下一行的 csrf_token 很明显就是 post 请求所带的 data 里的 _csrf ,另外两个是js里的函数,虽然js没好好学但也能看出来这俩是通过 post 请求获得州名和县名的,Binggo!一下子解决两个问题。

为了验证我的猜想,我打算先直接用requests获取点击 View Summary 前的页面的HTML和 cookies ,将从HTML中提取的 csrf_token 值作为点击 View Summary 时 post 请求的 data 里的 _csrf 值,同时附上 cookies ,这样两处 _csrf 就应该是匹配的了:

from lxml import etree

response1 = requests.get(url, headers=headers)

cookies = response1.cookies

html = etree.HTML(response1.text)

csrf_token = html.xpath(‘/html/head/meta[3]/@content’)[0]

data.update({‘_csrf’: csrf_token})

response2 = requests.post(url, data=data, headers=headers, cookies=cookies)

print(response2.status_code)

输出 200 ,虽然和Chrome显示的 302 不一样,但是也表示成功,那就不管了。把 response2.text 写入html文件打开看是这样:

Python3模拟登录并爬取表格数据!做表格的高手也没我厉害

Yeah,数据都在!说明我的猜想是对的!那一会再试试我从没用过的 requests.Session() 维持会话,自动处理 cookies 。

尝试pandas库提取网页表格

现在既然已经拿到了目标页面的HTML,那在获取所有年、地区、州名、县名之前,先测试一下 pandas.read_html 提取网页表格的功能。

pandas.read_html 这个函数时在写代码时IDE自动补全下拉列表里瞄到的,一直想试试来着,今天乘机拉出来溜溜:

import pandas as pd

df = pd.read_html(response2.text)[0]

print(df)

输出:

Python3模拟登录并爬取表格数据!做表格的高手也没我厉害

Yeah!拿到了,确实比自己手写提取方便,而且数值字符串自动转成数值,优秀!

准备所有参数

接下来要获取所有年、地区、州名、县名。年份和地区是写死在HTML里的,直接xpath获取:

Python3模拟登录并爬取表格数据!做表格的高手也没我厉害

州名、县名根据之前发现的两个js函数,要用 post 请求来获得,其中州名要根据地区名获取,县名要根据州名获取,套两层循环就行

def new():

session = requests.Session()

response = session.get(url=url, headers=headers)

html = etree.HTML(response.text)

return session, html

session, html = new()

years = html.xpath(‘//*[@id=“crmsearchform-year”]/option/text()’)

regions = html.xpath(‘//*[@id=“crmsearchform-region”]/option/text()’)

_csrf = html.xpath(‘/html/head/meta[3]/@content’)[0]

region_state = {}

state_county = {}

for region in regions:

data = {‘region’: region, ‘_csrf’: _csrf}

response = session.post(url_state, data=data)

html = etree.HTML(response.json())

region_state[region] = {x: y for x, y in

zip(html.xpath(‘//option/@value’),

html.xpath(‘//option/text()’))}

for state in region_state[region]:

data = {‘state’: state, ‘_csrf’: _csrf}

response = session.post(url_county, data=data)

html = etree.HTML(response.json())

state_county[state] = html.xpath(‘//option/@value’)

啧啧,使用 requests.Session 就完全不需要自己管理 cookies 了,方便!具体获得的州名县名就不放出来了,实在太多了。然后把所有年、地区、州名、县名的可能组合先整理成csv文件,一会直接从csv里读取并构造 post 请求的 data 字典:

remain = [[str(year), str(region), str(state), str(county)]

for year in years for region in regions

for state in region_state[region] for county in state_county[state]]

remain = pd.DataFrame(remain, columns=[‘CRMSearchForm[year]’,

‘CRMSearchForm[region]’,

‘CRMSearchForm[state]’,

‘CRMSearchForm[county]’])

remain.to_csv(‘remain.csv’, index=False)

由于州名有缩写和全称,也本地保存一份

import json

with open(‘region_state.json’, ‘w’) as json_file:

json.dump(region_state, json_file, indent=4)

我看了一下,一共49473行——也就是说至少要发送49473个 post 请求才能爬完全部数据,纯手工获取的话大概要点击十倍这个数字的次数……

正式开始

那么开始爬咯

import pyodbc

with open(“region_state.json”) as json_file:

region_state = json.load(json_file)

data = pd.read_csv(‘remain.csv’)

读取已经爬取的

cnxn = pyodbc.connect(‘DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};’

‘DBQ=./ctic_crm.accdb’)

crsr = cnxn.cursor()

crsr.execute(‘select Year_, Region, State, County from ctic_crm’)

done = crsr.fetchall()

done = [list(x) for x in done]

done = pd.DataFrame([list(x) for x in done], columns=[‘CRMSearchForm[year]’,

‘CRMSearchForm[region]’,

‘CRMSearchForm[state]’,

‘CRMSearchForm[county]’])

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值