不管三七二十一, post 一下试试看
import requests
url = ‘https://www.ctic.org/crm?tdsourcetag=s_pctim_aiomsg’
headers = {‘user-agent’: 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ’
'AppleWebKit/537.36 (KHTML, like Gecko) ’
‘Chrome/74.0.3729.131 Safari/537.36’,
‘Host’: ‘www.ctic.org’}
data = {‘_csrf’: ‘SjFKLWxVVkkaSRBYQWYYCA1TMG8iYR8ReUYcSj04Jh4EBzIdBGwmLw==’,
‘CRMSearchForm[year]’: ‘2011’,
‘CRMSearchForm[format]’: ‘Acres’,
‘CRMSearchForm[area]’: ‘County’,
‘CRMSearchForm[region]’: ‘Midwest’,
‘CRMSearchForm[state]’: ‘IL’,
‘CRMSearchForm[county]’: ‘Adams’,
‘CRMSearchForm[crop_type]’: ‘All’,
‘summary’: ‘county’}
response = requests.post(url, data=data, headers=headers)
print(response.status_code)
果不其然,输出 400 ……我猜这就是传说中的 cookies 在搞鬼吗?《Python3网络爬虫实战》只看到第6章的我不禁有些
心虚 跃跃欲试呢!
首先,我搞不清 cookies 具体是啥,只知道它是用来维持会话的,应该来自于第一次 get ,搞出来看看先:
response1 = requests.get(url, headers=headers)
if response1.status_code == 200:
cookies = response1.cookies
print(cookies)
输出:
<RequestsCookieJar[
Nah,看不懂,不看不管,直接把它放到 post 里试试
response2 = requests.post(url, data=data, headers=headers, cookies=cookies)
print(response2.status_code)
还是 400 ,气氛突然变得有些焦灼,我给你 cookies 了啊,你还想要啥?!
突然,我发现一件事: post 请求所带的 data 中那个一开始就显得很可疑的 _csrf 我仿佛在哪儿见过?
那个我完全看不懂的 cookies 里好像就有一个 _csrf 啊!但是两个 _csrf 的值很明显结构不一样,试了一下把 data 里的 _csrf 换成 cookies 里的 _csrf 确实也不行。
但是我逐渐有了一个想法:这个两个 _csrf 虽然不相等,但是应该是匹配的,我刚刚的 data 来自浏览器, cookies 来自python程序,所以不匹配!
于是我又点开浏览器的DevTools,Ctrl+F搜索了一下,嘿嘿,发现了:
和
这三处。
第一处那里的下一行的 csrf_token 很明显就是 post 请求所带的 data 里的 _csrf ,另外两个是js里的函数,虽然js没好好学但也能看出来这俩是通过 post 请求获得州名和县名的,Binggo!一下子解决两个问题。
为了验证我的猜想,我打算先直接用requests获取点击 View Summary 前的页面的HTML和 cookies ,将从HTML中提取的 csrf_token 值作为点击 View Summary 时 post 请求的 data 里的 _csrf 值,同时附上 cookies ,这样两处 _csrf 就应该是匹配的了:
from lxml import etree
response1 = requests.get(url, headers=headers)
cookies = response1.cookies
html = etree.HTML(response1.text)
csrf_token = html.xpath(‘/html/head/meta[3]/@content’)[0]
data.update({‘_csrf’: csrf_token})
response2 = requests.post(url, data=data, headers=headers, cookies=cookies)
print(response2.status_code)
输出 200 ,虽然和Chrome显示的 302 不一样,但是也表示成功,那就不管了。把 response2.text 写入html文件打开看是这样:
Yeah,数据都在!说明我的猜想是对的!那一会再试试我从没用过的 requests.Session() 维持会话,自动处理 cookies 。
尝试pandas库提取网页表格
现在既然已经拿到了目标页面的HTML,那在获取所有年、地区、州名、县名之前,先测试一下 pandas.read_html 提取网页表格的功能。
pandas.read_html 这个函数时在写代码时IDE自动补全下拉列表里瞄到的,一直想试试来着,今天乘机拉出来溜溜:
import pandas as pd
df = pd.read_html(response2.text)[0]
print(df)
输出:
Yeah!拿到了,确实比自己手写提取方便,而且数值字符串自动转成数值,优秀!
准备所有参数
接下来要获取所有年、地区、州名、县名。年份和地区是写死在HTML里的,直接xpath获取:
州名、县名根据之前发现的两个js函数,要用 post 请求来获得,其中州名要根据地区名获取,县名要根据州名获取,套两层循环就行
def new():
session = requests.Session()
response = session.get(url=url, headers=headers)
html = etree.HTML(response.text)
return session, html
session, html = new()
years = html.xpath(‘//*[@id=“crmsearchform-year”]/option/text()’)
regions = html.xpath(‘//*[@id=“crmsearchform-region”]/option/text()’)
_csrf = html.xpath(‘/html/head/meta[3]/@content’)[0]
region_state = {}
state_county = {}
for region in regions:
data = {‘region’: region, ‘_csrf’: _csrf}
response = session.post(url_state, data=data)
html = etree.HTML(response.json())
region_state[region] = {x: y for x, y in
zip(html.xpath(‘//option/@value’),
html.xpath(‘//option/text()’))}
for state in region_state[region]:
data = {‘state’: state, ‘_csrf’: _csrf}
response = session.post(url_county, data=data)
html = etree.HTML(response.json())
state_county[state] = html.xpath(‘//option/@value’)
啧啧,使用 requests.Session 就完全不需要自己管理 cookies 了,方便!具体获得的州名县名就不放出来了,实在太多了。然后把所有年、地区、州名、县名的可能组合先整理成csv文件,一会直接从csv里读取并构造 post 请求的 data 字典:
remain = [[str(year), str(region), str(state), str(county)]
for year in years for region in regions
for state in region_state[region] for county in state_county[state]]
remain = pd.DataFrame(remain, columns=[‘CRMSearchForm[year]’,
‘CRMSearchForm[region]’,
‘CRMSearchForm[state]’,
‘CRMSearchForm[county]’])
remain.to_csv(‘remain.csv’, index=False)
由于州名有缩写和全称,也本地保存一份
import json
with open(‘region_state.json’, ‘w’) as json_file:
json.dump(region_state, json_file, indent=4)
我看了一下,一共49473行——也就是说至少要发送49473个 post 请求才能爬完全部数据,纯手工获取的话大概要点击十倍这个数字的次数……
正式开始
那么开始爬咯
import pyodbc
with open(“region_state.json”) as json_file:
region_state = json.load(json_file)
data = pd.read_csv(‘remain.csv’)
读取已经爬取的
cnxn = pyodbc.connect(‘DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};’
‘DBQ=./ctic_crm.accdb’)
crsr = cnxn.cursor()
crsr.execute(‘select Year_, Region, State, County from ctic_crm’)
done = crsr.fetchall()
done = [list(x) for x in done]
done = pd.DataFrame([list(x) for x in done], columns=[‘CRMSearchForm[year]’,
‘CRMSearchForm[region]’,
‘CRMSearchForm[state]’,
‘CRMSearchForm[county]’])
感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!