自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 目标检测算法——YOLOv1

YOLOv1是一种开创性的单阶段目标检测算法,通过将图像划分为7×7网格并直接回归边界框位置和类别,实现了45FPS的实时检测速度。其核心在于7×7×30的输出张量,每个网格预测2个边界框(含坐标、宽高和置信度)和20个类别概率。训练阶段通过IoU筛选最优预测框并计算三类损失(坐标、置信度、类别),推理阶段则使用NMS去除冗余框。虽然YOLOv1在速度上突破显著,但存在小物体漏检、定位偏差和全连接层泛化性差等缺陷,为后续改进指明方向。该算法重构了目标检测范式,奠定了实时检测的基础。

2025-07-18 17:37:30 1140

原创 R-CNN 算法详解​

R-CNN是目标检测领域的重要突破,它结合CNN特征提取与传统区域建议方法,显著提升了检测准确率。其流程包括:通过SS算法生成候选区域,使用微调后的AlexNet提取特征,并用SVM分类器进行分类,最后通过边界框回归精确定位。虽然R-CNN具有自动特征学习和高准确率的优点,但也存在计算效率低、存储需求大和训练过程复杂等缺点。作为深度学习目标检测的开创性工作,R-CNN为后续算法发展奠定了基础,推动了目标检测技术的持续进步。

2025-07-17 12:15:34 1434

原创 高效阅读科研论文

科研新手常因方法不当导致论文阅读效率低下。本文提出三遍阅读法:第一遍5-10分钟速览标题、摘要、结论和图表,判断相关性;第二遍30-60分钟精读引言、方法和结果,理解核心思想;第三遍1小时以上深度研读,分析推导细节并批判思考。建议使用谷歌学术等工具辅助查询,通过明确阅读目标、分层次深入的方法,从"读不懂"逐步进阶到"读得深",最终实现高效吸收和创新应用。

2025-07-16 10:13:43 1356

原创 LeNet-5模型结构、原理与PyTorch实现

LeNet是卷积神经网络的开创性架构,由Yann LeCun在90年代提出,用于手写数字识别。其核心设计包括局部感受野、权值共享和空间下采样,奠定了现代CNN的基础。LeNet-5采用交替的卷积层和池化层结构,逐步提取特征,最终通过全连接层分类。尽管受限于当时条件(如使用Sigmoid激活函数),但它为后续AlexNet、VGG等模型提供了范本。如今学习LeNet有助于理解CNN的基本原理,其设计思想仍是深度学习的核心。通过PyTorch等框架实现改进版(如使用ReLU和最大池化)仍能取得优异性能。作为里程

2025-07-12 16:03:15 834

原创 PyTorch环境的配置及pycharm如何导入pytorch深度学习环境

本文详细介绍了在Anaconda中搭建PyTorch深度学习环境并在PyCharm中配置的完整流程。主要内容包括:1)Anaconda安装及CUDA驱动的检查;2)创建虚拟环境并安装匹配的PyTorch版本;3)PyCharm关联Anaconda环境的操作步骤;4)常见问题解决方案。通过"Anaconda环境管理+PyCharm开发"的组合,可以高效开展深度学习项目开发。文中特别强调了GPU版本配置的注意事项,并提供了环境验证方法,帮助开发者快速搭建稳定可用的PyTorch开发环境。

2025-06-11 22:01:01 3683 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除