进行大数据测试需要关注那些测试点?_大数据测试需要了解业务吗(3)

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

资源分享【这份资料必须领取~

大家好,今天我们一起聊聊在进行大数据测试中需要关注哪些测试点,如何更好得做好大数据测试。

一、从传统的软件测试质量模型来看,大数据测试可以从大数据的功能性、、易用性进行评估质量。

1.功能性的测试:指大数据目标业务数据的存储功能是否符合预期需求。例:公司通过爬虫获取到友商的一些数据,作为测试人员可以尝试考虑这些方面。数据爬取的是否正确、数据入库是否正确、存储的表及字段信息是否正确等。

2.数据全面性:测试通过数据分析拿到的爬虫数据对应的友商是否全面,即:除了竞品或友商中A的数据应该获取,竞品或友商B、C、D的数据是否有考虑,通常在需求评审阶段提出,测试获取的数据是否完整 等。

3.数据完整性:测试分析目标数据确保指定时间范围内每天有数据,排除被风控了的情况、数据是否重复,例:同1条URL对应2条结果数据,数据预期与结果总条数一致,表数据信息是一致、是否有遗漏的情况。

4.数据合理性:从数据应用层出发测试,应测试数据字段类型check,如对重要字段类型check,例:int型下出现其他字符类型情况,字段异常值check,例:null、空、或者另外一些约定异常值,字段默认值一致性验证check,例: 从A表同步到B表后,某字段枚举值含义相同。应用数据字段的正确性。

5.数据准确性:测试获取到数据的结果表与数据源头表是否一致,可能源表经过A -> B -> C处理后得到结果表,所以需要验证整个过程数据是否丢失,确保数据的准确与一致性,可基于数据的总量来考量验证。

6.数据安全性:多账号登录及账号权限控制,敏感数据脱敏加密处理,数据加密隔离等方面进行测试。

7.数据易用性:获取的数据可复用、可视频化、易理解性等方面进行考量测试。

二、大数据的可靠性与数据的处理效率。

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值