2024年软件测试最新【网安AIGC专题10(3),2024年最新软件测试面试必备的集合源码详解

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

方法: 该框架首先为三个不同角色的大型语言模型分配任务,包括分析员(analyst,负责需求分析)、程序员(coder,负责编写代码)、测试员(tester,负责检验效果),然后通过软件开发方法(SDM)规定了这些角色之间的交互方式。

结果: 通过所提出的自协作框架,相较于ChatGPT3.5,实验结果显示在四种不同基准测试中,Pass@1的性能提高了29.9%至47.1%。

在这里插入图片描述

相关工作

PPT学习

在这里插入图片描述

大语言模型在代码生成方向

自2021至现在,有许多团队证实了LLM在代码生成领域的潜力
[Chen et al., 2021, Shen et al., 2022, Li et al., 2022, Dong et al., 2023a,Nijkamp et al., 2022, Fried et al., 2022, Zheng et al., 2023]

  • 仍然存在的挑战
    在复杂任务上正确地生成代码
  • 解决方法
    团队培训方法:团队合作理论+软件工程实践
  • 好处
    分解成子任务,高效,可控;
    加入错误检测和质量控制;
    保证与要求相符

提高生成的代码的准确性和质量:预先、预后处理

预后处理(post-processing)和预先处理(prior-processing)
post-processing:对多个候选人重新排序,选出最正确的方案
CodeT[Chen et al., 2021]和Coder-Reviewer[Zhang et al.,2022]
问题:引入了额外的计算成本用于测试用例生成
post-processing:引导LLM进行rubber duck debugging
self-debugging[Chen et al.,2023]
问题:依赖于few-shot prompting,要求对于每个数据集专门生成一些提示例子,耗时耗力
prior-processing:在代码生成之前引入planning
self-planning[Jiang et al., 2023]
问题:并不完善

将团队协作理论应用于代码生成的研究

[Schick et al., 2022]

  • 原理:先训练不同模型执行对应子任务,然后用联合训练增强相互理解
  • 问题:这种训练方法非常costly;缺乏相关的训练数据
改进

[Ouyang et al., 2022, Chung et al., 2022, OpenAI, 2023]

  • 原理:经过足够的训练让LLM在软件开发的各个阶段都可以出色地完成任务,方便后续分配;根据人类命令做出调整,开发模型交互的潜力
  • 问题:依赖于人类程序员的专业知识,依然耗时耗力

解决方法:本论文提出自协作框架,让ChatGPT形成团队

成果和贡献

提出LLM的自协作框架,以应对“在复杂任务上生成正确的代码”的挑战

根据SDM实例化初始团队,在software development环节分配三个角色负责不同stage

由GPT3.5组成的自协作虚拟团队在各种代码生成的基准测试上,性能超过了GPT-4

在现实场景下,自协作模式有效完成复杂任务

自协作框架原理

1、DOL任务分配

根据任务分配角色指令,然后将对应的任务传递给角色
在这里插入图片描述

2、共享黑板协作

不同角色间,将输出的信息共享

在这里插入图片描述

3、Instance实例化

1)采用SDM中的经典瀑布模型 [Petersen et al., 2009],简化为三个阶段:分析、编码、测试。
2)分析员:生成一个高维的计划,着重指导程序员。程序员:根据分析员的计划写代码;根据测试员的测试报告修改代码。测试员:从功能性、可读性和可维护性评判程序员的代码
3)终止条件:达到最大交互次数n或者测试员报告没有错误

在这里插入图片描述

案例说明

简单任务:基本操作

1)分析员:分解任务
+制定high-level计划
2)程序员:按照计划生成对应代码
3)测试员:检验代码的功能性和边缘测试情况,反馈错误让程序员修改

在这里插入图片描述

复杂任务:游戏开发

未展示训练过程,仅说明结果
满足所有游戏逻辑,保障了精确的角色控制,设置正确的碰撞检测,必要的游戏资产加载和适当的图像缩放。此外,注意到了没有直接规定但是符合常识的游戏逻辑,比如炸弹掉落至底部后会被重置位置
单个LLM只能生成脚本的粗略草稿
在这里插入图片描述

实验

设置

在这里插入图片描述

数据集

四个基准测试(数据集)

1)MBPP(sanitized version) [Austin et al., 2021]

427个Python编程任务,属于调用标准库功能函数的基础代码生成任务
包含:自然语言描述+编程计划提示+3个测试用例

2)HumanEval [Chen et al., 2021]

164个编程任务
包含:自然语言描述+函数签名+函数主体+单元测试

3)MBPP-ET
4)HumanEval-ET

比原本的数据集多100余个测试,包含边缘案例

实验结果1:与其他代码生成方法比较

在这里插入图片描述

输入:自然语言+函数签名+公共的测试用例
分析:相较于GPT-3.5增长了29.9%-34.6%;在后两个数据集上表现更佳,证明自协作代码生成的可靠性。
原因可能为:成员多可以考虑更多边界条件处理常见bug

实验结果2:评估不同角色的影响

在这里插入图片描述

输入:自然语言
分析:在HumanEval基准测试上三角色团队效果最好,在MBPP基准测试上coder-tester团队表现最好,
原因是:MBPP的两个数据集任务较简单,不需要计划

实验结果3:评估有无角色的影响

在这里插入图片描述
few-shot prompting:每个阶段给予一些案例提示
zero-shot:给予指令删除角色,不给予提示
分析:角色指令的特定的上下文语境限制了LLM的生成空间,令其在场景约束下进行推理,生成与命令一致的结果。few-shot比zero-shot表现差的原因是有限的例子提示不能完全反映目标反而让LLM的理解产生偏差,此外提示太长阻碍了LLM的理解。

实验结果4:评估交互次数的影响

在这里插入图片描述
Maximum Interaction(MI)=0, 相当于只有coder
分析:大多数任务在两轮内就可以完成;轮数越大,效果越好,但是由于maximum token的限制只能做4轮交互

结论与展望

优势

自协作框架允许团队成员的数量被修改,以适应不同难度的代码生成任务
在通用人工智能(AGI)时代,也可以不受限制,创造新的软件开发模型和新角色组成的虚拟团队

问题

完全自主的系统,可能会脱离需求
有可能的解决方案:结合人类专家的指导监督虚拟团队的操作

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

5-1715016802408)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值