ComfyUI 安装教程 1000张工作流分享 请收藏

最近SD的大更新比较少,所以最近转战到ComfyUI,从流程节点,到工作流搭建,使用ComfyUI实现webui的大部分功能,且节点的定义性很强,这就造就了ComfyUI的多样性,但是不得不承认,多节点之间的搭配,是否符合整个底层流程,通过一个工作流实现多节点插件的配合工作是比较复杂的,而ComfyUI不近支持GPU还支持CPU,大大降低了使用门槛,在显存占用方面明显低于webui,实际测试中,出图分辨率在2160\*1260 下跑视频22S仍然不会爆显存,都在说比webui有更好的内存管理功能,但是我没有找到理论知识点证明这一点。

下方领取1000张comfyui工作流
请添加图片描述

ComfyUI

最强大和模块化的稳定扩散 GUI、api 和后端,带有图形/节点接口

特征

  • 节点/图形/流程图界面,用于实验和创建复杂的稳定扩散工作流程,而无需编写任何代码。

  • 完全支持 SD1.x、SD2.x 和 SDXL

  • 异步队列系统

  • 许多优化:仅重新执行在执行之间更改的工作流部分。

  • 命令行选项:使其在vram小于3GB vram的GPU上运行(在具有低vram的GPU上自动启用)--lowvram

  • 即使您没有具有以下功能的 GPU,也可以正常工作

  • 可以加载 ckpt、安全张量和扩散器模型/检查点。独立的VAE和CLIP型号。

  • Embeddings/Textual inversion

  • 从生成的 PNG 文件加载完整的工作流。

  • 将工作流保存/加载为 JSON 文件。

  • 节点界面可用于创建复杂的工作流程,例如用于高清修复或更高级的工作流程。

  • 常规模型和修复模型

  • 启动速度非常快。

  • 完全离线工作:永远不会下载任何内容。

劣势:

  • 操作门槛高,需要有清晰的逻辑;

  • 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。

安装

链接:https://pan.quark.cn/s/320387279505

下载官方整合包到本地,解压到非C盘路径,如果你已经安装了SD,webui那真是太好了,省去了大部分的基础环境安装,解压缩文件夹。重命名根目录文件夹为Comfyuiwindows即可。

各模型存放位置

大模型放入“ComfyUI_windows_portable\ComfyUI\models\checkpoints”``VAE 模型放入“ComfyUI_windows_portable\ComfyUI\models/vae”``Lora 模型“ComfyUI_windows_portable\ComfyUI\models/loras”

但如果你已经安装过SDWEBUI,这不需要放置任何模型到文件夹,我们可以与WEBUI共享文件夹,这真的很nice。

打开根目录下的

extra_model_paths.yaml.example

文件,右键修改为

extra_model_paths.yaml

修改basepath为你SDwebui的根路径即可

如何更新

在update文件夹下点击就可

如何下载插件

跟我们日常下载SD的插件方式一样,个人分为3种,但记住一种:只有显示了可卸载的才是成功安装的

第一种下载一个管理插件的插件

叫做manager,以后所有的插件可以在这个插件内进行管理

第一个最简单的工作流

这可以看做一个简单的最为基础的工作流,而所有的工作流是在这个基础上可扩展的,可以自定义节点流程加载。

当我们想要构建一副脑海中的画面,我们先构思画面来书写提示词,下面我们会专门介绍关于提示词部分的书写,然后由模型解析文本,反推汉字或者文本到Clip学习,接着由U-Net端到端的生成图片,然后由VAE来上色,那么一个简单的绘画流程就完成了,这个图片由噪点逐步变为清晰的过程,我们称之为扩散。

其中clip一共有12层2表示在倒数第二层停止处理,通常不能超过6当参考层的深度浅且在这个阶段就被跳过时,传递的信息量也会减少,最终以不准确的信息噪声影响生成的图像,以认为Clip Skip和CFG Scale之间没有相互作用,它们是完全不同的东西。

汉化

虽然有汉化插件,但真的真的真的不建议大家汉化,大部分的功能如果已经在SD熟悉的话,我建议不要汉化,很多含义都会产生歧义

插件下载后再小齿轮点击语言切换为中文简体即可


为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
请添加图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

请添加图片描述
img

### ComfyUI 工作流实例与教程 #### 使用 ComfyUI 构建图像生成工作流 ComfyUIStable Diffusion 的一种基于节点组装绘图流程的图形用户界面(GUI),允许用户通过连接不同类型的节点来创建复杂的图像生成工作流[^1]。 对于初学者来说,理解如何设置基本的工作流至关重要。这里提供了一个简单的例子: ```python from comfyui import Node, Workflow # 创建输入节点 input_node = Node("Input") # 添加处理节点 process_node_1 = Node("ProcessImage", {"filter": "blur"}) process_node_2 = Node("AdjustColor", {"brightness": 0.5}) # 定义输出节点 output_node = Node("Output") # 组装成工作流 workflow = Workflow() workflow.connect(input_node, process_node_1) workflow.connect(process_node_1, process_node_2) workflow.connect(process_node_2, output_node) # 执行工作流 result_image = workflow.run(image_input) ``` 这段代码展示了如何定义并运行一个简单的工作流,其中包含了几个用于修改图片效果的关键步骤。 #### 面部细节增强的具体应用案例 另一个具体的例子涉及到了面部特征细化的功能实现。此功能利用了预训练模型对面部区域进行识别,并对其进行优化处理[^3]。以下是简化版的操作指南: 1. 加载基础图像作为输入; 2. 应用特定于人脸检测和分割的任务模块; 3. 对提取出来的人脸部分执行高分辨率重建算法; 4. 将改进后的脸部数据重新融入原始场景中完成最终渲染; 这种类型的应用程序非常适合那些希望提升人物肖像质量而不改变整体风格的设计者们使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值