「ComfyUI」比 joy_caption 更好用的提示词反推模型!

前言

距离我们上次介绍 joy_caption 还没几天呢,这就又出新模型来与 joy_caption 一争高下了。

今天我们要介绍的是:Florence-2-X-PromptGen-v1.5,是在 Florence-2 的基础上进行精细调优的一款高级图像标注工具,专门为生成和标注提示词而训练。

相比 Florence-2,不仅提升了反推质量以及准确度,最重要的是继承了 Florence-2 的低显存和超快的推理速度。

最低只需要 1G 左右的显存就可以完成推理,性价比是相当高的。

接下来,我们就来对比下 Florence-2-X-PromptGen-v1.5 和 joy_caption 的反推效果吧!

好了,话不多说,我们直接开整。

Florence-2-X-PromptGen-v1.5 也和 Florence-2 一样有 base 版 和 large 版之分,也就是基础版和升级版,大小分别是 1G 和 3G,显存占用分别是 0.7G 和 1.8G 的样子。joy_caption 占用的显存大概是 7.7G 的样子。

接下来,我们就来对比下 Florence-2-X-PromptGen-v1.5 的 base 版、large 版 和 joy_caption 的反推效果吧。

本文涉及的工作流和插件,需要的朋友请扫描免费获取哦 ~在这里插入图片描述

左边是原图,右边是反推的提示词。

这里可以看到 base 没有识别出和服,还多了一枚戒指;large 这里精准的识别出了粉色的指甲,不过把耳环漏了,手的位置也不太对;joy 这里也有一些不太准确的地方,比如波浪型头发、项链、胸前敞开、握手等等。

来看下出图效果,总体来看的话,还是 large 要准确一些。

在这里插入图片描述

换个真实的风格试试。

总体来看的话,也还是 large 的出图效果更相似,不过头上的花漏了一朵。

来换个拟人的动物风格。

看上边的反推提示词,large 其实是识别出了是黑色三角帽,但是 flux.1 没画出来,joy 这里是把帽子给漏了。

来个抽象一点的,看提示词的话,large 总体上来说更准确一些。

从生成的图像来看,也还是 large 最符合原图的风格框架。

演示完毕,我们来看下这个模型具体如何使用,如果安装了 Comfyui_CXH_joy_caption 这个插件的小伙伴可以直接使用 base 版,现在 large 版还不支持,不过后续应该也会支持。

想要现在就用上 large 版本的小伙伴,或者 Comfyui_CXH_joy_caption 安装不上的小伙伴,可以安装这个插件:ComfyUI-Miaoshouai-Tagger,这个 Florence-2-X-PromptGen-v1.5 模型官方指定的插件。

以下分别是两个插件使用 Florence-2-X-PromptGen-v1.5 反推提示词的工作流 。

从性比价上来说,large 是完胜 joy 的,毕竟显存占用不到 2G,推理速度也比 joy 快,而且准确率也不比 joy 低。

当然这个只是一家之言哈,小伙伴们还是可以多尝试一些场景,看看哪个更符合自己。

好了,今天的分享就到这里了,感兴趣的小伙伴快去试试吧!

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值