本期将从以下4个模块逐步讲解:
📌sd提示词怎么写
📌sd模型下载
📌sd实用插件
📌Control Net插件讲解
SD模型插件都整理成网盘了,有需要的可以直接去文末获取
sd提示词怎么写
提示词之间要用英文逗号隔开
提示词之间是可以换行的
正向提示词例如:
主体描述:一个女孩,长卷发,头发散开,五官精致,纤瘦。
场景描述:山顶的寺庙,山,水,树,云,太阳,天。
风格描述:中国风,禅意,浪漫主义。
画面需求描述(常规提示词,可通用):柔和的光线,8k质量,超级详细,伟大的杰作,壁纸,生动的色彩,逼真,美丽,好看。
补充描述:正常的的手指,完美的五官。
反向提示词:
常规提示词:
(badhandv4:1.2),(worst quality:2),(low quality:2),(normal
quality:2),lowres,bad anatomy,bad hands,normal
quality,((monochrome)),((grayscale))
watermark,
easynegative ng_deepnegative_v1_75t,nsfw,
上面主要说的是一些质量差,丑,颜色单一之类的, 通用反向提示词,这个可以直接拿去用就行。
基于画面的需求进行详细反向描述:
例如这次的主体是人:畸形的手指,丑陋的五官,丑的。
左图没写反向提示词的,右图增加了反向提示词的
提示词的权重:
提示词默认权重为1,如果你不进行权重的调整的话越靠前的提示词权重越高,但是如果你需要突出画面中某个元素,或者某个元素AI没有给你生成出来的话,就需要提高这个描述词的权重来突出这个内容。
加权重有两种方式:
1.加括号(), 增加一个括号就增加0.1的权重, (美丽的)就是1.1的权重,((美丽的))就是1.2的权重。
2.加括号和冒号(😃,例如:(美丽的:1.5),就是1.5的权重。
比如我想要画面里有花,但是因为描述词比较多, 花的权重没有突出,ai就可能自己取舍或者没有很明显的花,这时候我们就增加花的权重, 让花在画面里的比例更大。
下方左图提示词:a girl, with long curly hair, loose hair, delicate facial features,
and slender features, (Temple on the mountaintop:1.5), mountains, water,
trees, clouds, sun, sky,flowerChinese style, Zen, Romanticism Soft lighting,
8k quality, super detailed, great masterpiece, wallpaper, vivid colors,
realistic, beautiful, and good-looking
下方右图提示词:a girl, with long curly hair, loose hair, delicate facial features,
and slender features, (Temple on the mountaintop:1.5), mountains, water,
trees, clouds, sun, sky,(flower:2)Chinese style, Zen, Romanticism Soft
lighting, 8k quality, super detailed, great masterpiece, wallpaper, vivid
colors, realistic, beautiful, and good-looking
sd模型下载
常用模型下载网址:
https://www.liblib.art
https://civitai.com/
https://huggingface.co/
模型分为:
基础模型(大模型)
VAE模型(滤镜)
control net模型(插件辅助模型)
Lora模型(基于基础模型的风格调整模型)
模型安装位置:
模型放置位置记得要放一张相同同命名模型效果图片,这样stable
diffusion就会识别到,展示的时候会展示这个图片,能快速找到需要的模型,没有放图片的话就会像第一个这样,显示图片缺失,要靠看下面的模型名称来分辨模型的作用。
sd实用插件
插件安装方法+地址:
一、Tag自动补全:
词库, 输入中文后会跳出适合AI理解的英文选项。
二、图库浏览器:
1.存留自己往期生成过的效果图,并保留该效果图的生成参数(模型,lore,迭代步数,采样,宽高等都会保留,插件数据不会保留),把图片信息完全复制到正向提示里,然后点击生成底部的箭头,这张图片的所有参数就会自己匹配到相应的位置。
2.对图片进行评级,便于后期筛选。
三、WD1.4 Tag反推插件:
把图片给到AI,AI反推完成后记得点击卸载所有反推模型,不然会占内存。
给反推插件的图像
选用同款模型后,直接用反推的关键词生成的结果
加入一个动作要求,生成的结果(结合ControlNet )
四.sd-webui-prompt-all-in-one
Control Net插件讲解
一、控制网络(ControlNet插件):
https://github.com/Mikubill/sd-webui-controlnet
安装方法见插件安装
官方:
contorlnet模型下载地址:
https://huggingface.co/lllyasviel/ControlNet-v1-1/…
二、Control Net有什么用?
1.线稿上色
2.小色稿-成稿
3.照片动作提取
4.线稿提取
1.线稿-上色(文生图)
首先准备一个线稿(干净一点的,因为sd不知道你什么线是要的,什么是不要的)。
2.小色稿-成稿(图生图)
要用没有线条或者同色系线条的小色稿来进行生成效果会更好
以下分别是:
a.人工绘制产出(用时3天)
b.和需求方沟通好草图方向
c.草图+小色稿+AI产出,用时1天左右
3.动作提取
根据具体需求绘制一个草图;
确定风格(找模型和Lora),直接对着sd说自己要的内容,输入关键词生成的结果;
点击编辑,调整一下动作,让它更像草图;
加入一个动作要求,生成的结果(结合ControlNet );
调整动作结构图+换一个模型得到的结果(需要锁定种子)。
4.线稿提取
但由于AIGC刚刚爆火,网上相关内容的文章博客五花八门、良莠不齐。要么杂乱、零散、碎片化,看着看着就衔接不上了,要么内容质量太浅,学不到干货。
这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。
有需要的朋友,可以点击下方免费领取!
AIGC所有方向的学习路线思维导图
这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
AIGC工具库
AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
有需要的朋友,可以点击下方卡片免费领取!
精品AIGC学习书籍手册
书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。
AI绘画视频合集
我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。