- Rejected tasks
-
任务拒绝策略
1)AbortPolicy,抛出运行时异常
2)CallerRunsPolicy 调用者直接运行,不在线程中运行。
3)DiscardPolicy 直接将任务丢弃
4)DiscardOldestPolicy 丢弃队列中头部的任务。
-
- New tasks submitted in method {@link #execute} will be
-
rejected when the Executor has been shut down, and also
-
when the Executor uses finite bounds for both maximum threads and
-
work queue capacity, and is saturated. In either case, the {@code
-
execute} method invokes the {@link
-
RejectedExecutionHandler#rejectedExecution} method of its {@link
-
RejectedExecutionHandler}. Four predefined handler policies are
-
provided:
-
- In the default {@link ThreadPoolExecutor.AbortPolicy}, the
-
handler throws a runtime {@link RejectedExecutionException} upon
-
rejection.
- In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
-
that invokes {@code execute} itself runs the task. This provides a
-
simple feedback control mechanism that will slow down the rate that
-
new tasks are submitted.
- In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
-
cannot be executed is simply dropped.
- In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
-
executor is not shut down, the task at the head of the work queue
-
is dropped, and then execution is retried (which can fail again,
-
causing this to be repeated.)
-
It is possible to define and use other kinds of {@link
-
RejectedExecutionHandler} classes. Doing so requires some care
-
especially when policies are designed to work only under particular
-
capacity or queuing policies.
- Hook methods
-
- This class provides {@code protected} overridable {@link
-
#beforeExecute} and {@link #afterExecute} methods that are called
-
before and after execution of each task. These can be used to
-
manipulate the execution environment; for example, reinitializing
-
ThreadLocals, gathering statistics, or adding log
-
entries. Additionally, method {@link #terminated} can be overridden
-
to perform any special processing that needs to be done once the
-
Executor has fully terminated.
-
If hook or callback methods throw exceptions, internal worker
-
threads may in turn fail and abruptly terminate.
- Queue maintenance
-
- Method {@link #getQueue} allows access to the work queue for
-
purposes of monitoring and debugging. Use of this method for any
-
other purpose is strongly discouraged. Two supplied methods,
-
{@link #remove} and {@link #purge} are available to assist in
-
storage reclamation when large numbers of queued tasks become
-
cancelled.
- Finalization
-
- A pool that is no longer referenced in a program AND
-
has no remaining threads will be {@code shutdown} automatically. If
-
you would like to ensure that unreferenced pools are reclaimed even
-
if users forget to call {@link #shutdown}, then you must arrange
-
that unused threads eventually die, by setting appropriate
-
keep-alive times, using a lower bound of zero core threads and/or
-
setting {@link #allowCoreThreadTimeOut(boolean)}.
-
Extension example. Most extensions of this class
-
override one or more of the protected hook methods. For example,
-
here is a subclass that adds a simple pause/resume feature:
-
{@code
-
class PausableThreadPoolExecutor extends ThreadPoolExecutor {
-
private boolean isPaused;
-
private ReentrantLock pauseLock = new ReentrantLock();
-
private Condition unpaused = pauseLock.newCondition();
-
public PausableThreadPoolExecutor(…) { super(…); }
-
protected void beforeExecute(Thread t, Runnable r) {
-
super.beforeExecute(t, r);
-
pauseLock.lock();
-
try {
-
while (isPaused) unpaused.await();
-
} catch (InterruptedException ie) {
-
t.interrupt();
-
} finally {
-
pauseLock.unlock();
-
}
-
}
-
public void pause() {
-
pauseLock.lock();
-
try {
-
isPaused = true;
-
} finally {
-
pauseLock.unlock();
-
}
-
}
-
public void resume() {
-
pauseLock.lock();
-
try {
-
isPaused = false;
-
unpaused.signalAll();
-
} finally {
-
pauseLock.unlock();
-
}
-
}
-
}}
-
@since 1.5
-
@author Doug Lea
*/
2、ThreadPoolExecutors 内部数据结构与构造方法详解
===================================
ThreadPoolExecutors的完整构造函数如下,从构造函数中能得出线程池最核心的属性。
/**
-
Creates a new {@code ThreadPoolExecutor} with the given initial
-
parameters.
-
@param corePoolSize the number of threads to keep in the pool, even
-
if they are idle, unless {@code allowCoreThreadTimeOut} is set
-
@param maximumPoolSize the maximum number of threads to allow in the
-
pool
-
@param keepAliveTime when the number of threads is greater than
-
the core, this is the maximum time that excess idle threads
-
will wait for new tasks before terminating.
-
@param unit the time unit for the {@code keepAliveTime} argument
-
@param workQueue the queue to use for holding tasks before they are
-
executed. This queue will hold only the {@code Runnable}
-
tasks submitted by the {@code execute} method.
-
@param threadFactory the factory to use when the executor
-
creates a new thread
-
@param handler the handler to use when execution is blocked
-
because the thread bounds and queue capacities are reached
-
@throws IllegalArgumentException if one of the following holds:
-
{@code corePoolSize < 0}<br>
-
{@code keepAliveTime < 0}<br>
-
{@code maximumPoolSize <= 0}<br>
-
{@code maximumPoolSize < corePoolSize}
-
@throws NullPointerException if {@code workQueue}
-
or {@code threadFactory} or {@code handler} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
-
corePoolSize 核心线程数
-
maximumPoolSize 最大线程数
-
keepAliveTime 线程保持激活状态的时间,如果为0,永远处于激活状态
-
unit ,keepAliveTime的单位
-
workQueue,线程池使用的队列
-
threadFactory 创建线程的工厂
-
handler 当队列已满,无更大线程处理任务时的拒绝任务的策略。
除了这些核心参数外,我觉得有必要再关注如下。
-
HashSet workers
-
completedTaskCount 完成的任务数
-
allowCoreThreadTimeOut,该值默认为false,也就是默认keepAliveTime不会生效。
3、核心源码分析
========
3.1 线程状态与几个基础方法设计原理
/**
-
The main pool control state, ctl, is an atomic integer packing
-
two conceptual fields
-
workerCount, indicating the effective number of threads
-
runState, indicating whether running, shutting down etc
-
In order to pack them into one int, we limit workerCount to
-
(2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
-
billion) otherwise representable. If this is ever an issue in
-
the future, the variable can be changed to be an AtomicLong,
-
and the shift/mask constants below adjusted. But until the need
-
arises, this code is a bit faster and simpler using an int.
-
The workerCount is the number of workers that have been
-
permitted to start and not permitted to stop. The value may be
-
transiently different from the actual number of live threads,
-
for example when a ThreadFactory fails to create a thread when
-
asked, and when exiting threads are still performing
-
bookkeeping before terminating. The user-visible pool size is
-
reported as the current size of the workers set.
-
The runState provides the main lifecyle control, taking on values:
-
RUNNING: Accept new tasks and process queued tasks
-
SHUTDOWN: Don’t accept new tasks, but process queued tasks
-
STOP: Don’t accept new tasks, don’t process queued tasks,
-
and interrupt in-progress tasks
-
TIDYING: All tasks have terminated, workerCount is zero,
-
the thread transitioning to state TIDYING
-
will run the terminated() hook method
-
TERMINATED: terminated() has completed
-
The numerical order among these values matters, to allow
-
ordered comparisons. The runState monotonically increases over
-
time, but need not hit each state. The transitions are:
-
RUNNING -> SHUTDOWN
-
On invocation of shutdown(), perhaps implicitly in finalize()
-
(RUNNING or SHUTDOWN) -> STOP
-
On invocation of shutdownNow()
-
SHUTDOWN -> TIDYING
-
When both queue and pool are empty
-
STOP -> TIDYING
-
When pool is empty
-
TIDYING -> TERMINATED
-
When the terminated() hook method has completed
-
Threads waiting in awaitTermination() will return when the
-
state reaches TERMINATED.
-
Detecting the transition from SHUTDOWN to TIDYING is less
-
straightforward than you’d like because the queue may become
-
empty after non-empty and vice versa during SHUTDOWN state, but
-
we can only terminate if, after seeing that it is empty, we see
-
that workerCount is 0 (which sometimes entails a recheck – see
-
below).
*/
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
private static boolean isRunning(int c) {
return c < SHUTDOWN;
}
相关源码解读:
不知大家有没有想过为什么线程池的状态简单的定义为 -1,0,1,2,3 不就得了,为什么还要用移位操作呢?
原来这样的,ThreadPool ctl 的这个变量的设计哲学是用int的高3位 + 29个0代表状态,用高位000+低29位来表示线程池中工作线程的数量,太佩服了。
首先 CAPACITY 的值为 workCount 的最大容量,该值为 000 11111 11111111 11111111 11111111,29个1,
我们来看一下
private static int runStateOf(int c) { return c & ~CAPACITY; }
用ctl里面的值与容量取反的方式获取状态值。由于CAPACITY的值为000 11111 11111111 11111111 11111111,那取反后为111 00000 00000000 00000000 00000000, 用 c 与 该值进行与运算,这样就直接保留了c的高三位,然后将c的低29位设置为0,这不就是线程池状态的存放规则吗,绝。
根据此方法,不难得出计算workCount的方法。
private static int ctlOf(int rs, int wc) { return rs | wc; }
该方法,主要是用来更新运行状态的。确保工作线程数量不丢失。
线程池状态以及含义。
-
RUNNING 运行态
-
SHUTDOWN 关闭,此时不接受新的任务,但继续处理队列中的任务。
-
STOP 停止,此时不接受新的任务,不处理队列中的任务,并中断正在执行的任务
-
TIDYING 所有的工作线程全部停止,并工作线程数量为0,将调用terminated方法,进入到TERMINATED
-
TERMINATED 终止状态
线程池默认状态 RUNNING
如果调用shutdwon() 方法,状态从 RUNNING —> SHUTDOWN。
如果调用shutdwonNow()方法,状态从RUUNING|SHUTDOWN—>STOP。
SHUTDOWN —> TIDYING 。
队列为空并且线程池空。
STOP --> TIDYING。
线程池为空。
线程池设计原理:
-
线程池的工作线程为ThreadPoolExecutors的Worker线程,无论是submit还是executor方法中传入的Callable task,Runable参数,只是实现了Runnable接口,在线程池的调用过程,不会调用其start方法,只会调用Worker线程的start方法,然后在Worker线程的run方法中会调用入参的run方法。
-
众所周知,线程的生命周期在run方法运行结束后(包括异常退出)就结束。要想重复利用线程,我们要确保工作线程Worker的run方法运行在一个无限循环中,然后从任务队列中一个一个获取对象,如果任务队列为空,则阻塞,当然需要提供一些控制,结束无限循环,来销毁线程。在源码 runWorker方法与getTask来实现。
大概的实现思路是 如果 getTask 返回null, 则该 worker 线程将被销毁。
那 getTask 在什么情况下会返回 false 呢?
-
如果线程池的状态为SHUTDOWN并且队列不为空
-
如果线程池的状态大于STOP
-
如果当前运行的线程数大于核心线程数,会返回null,已销毁该worker线程
对keepAliveTime的理解,如果allowCoreThreadTimeOut为真,那么keepAliveTime其实就是从任务队列获取任务等待的超时时间,也就是workerQueue.poll(keepALiveTime, TimeUnit.NANOSECONDS)
3.2 FUture submit(Callable task) 方法详解
在看的代码的过程中,只要明白了上述基础方法,后面的代码看起来清晰可见,故,我只列出关键方法,大家可以浏览,应该不难。
/**
-
Submits a value-returning task for execution and returns a
-
Future representing the pending results of the task. The
-
Future’s get method will return the task’s result upon
-
successful completion.
-
-
If you would like to immediately block waiting
-
for a task, you can use constructions of the form
-
result = exec.submit(aCallable).get();
-
Note: The {@link Executors} class includes a set of methods
-
that can convert some other common closure-like objects,
-
for example, {@link java.security.PrivilegedAction} to
-
{@link Callable} form so they can be submitted.
-
@param task the task to submit
-
@return a Future representing pending completion of the task
-
@throws RejectedExecutionException if the task cannot be
-
scheduled for execution
-
@throws NullPointerException if the task is null
*/
Future submit(Callable task);
提交一个任务,并返回结构到Future,Future就是典型的Future设计模式,就是提交任务到线程池后,返回一个凭证,并直接返回,主线程继续执行,然后当线程池将任务运行完毕后,再将结果填充到凭证中,当主线程调用凭证future的get方法时,如果结果还未填充,则阻塞等待。
现将Callable与Future接口的源代码贴出来,然后重点分析submit方法的实现。
public interface Callable {
/**
-
Computes a result, or throws an exception if unable to do so.
-
@return computed result
-
@throws Exception if unable to compute a result
*/
V call() throws Exception;
}
public interface Future {
/**
-
Attempts to cancel execution of this task. This attempt will
-
fail if the task has already completed, has already been cancelled,
-
or could not be cancelled for some other reason. If successful,
-
and this task has not started when cancel is called,
-
this task should never run. If the task has already started,
-
then the mayInterruptIfRunning parameter determines
-
whether the thread executing this task should be interrupted in
-
an attempt to stop the task.
-
After this method returns, subsequent calls to {@link #isDone} will
-
always return true. Subsequent calls to {@link #isCancelled}
-
will always return true if this method returned true.
-
@param mayInterruptIfRunning true if the thread executing this
-
task should be interrupted; otherwise, in-progress tasks are allowed
-
to complete
-
@return false if the task could not be cancelled,
-
typically because it has already completed normally;
-
true otherwise
*/
boolean cancel(boolean mayInterruptIfRunning);
/**
-
Returns true if this task was cancelled before it completed
-
normally.
-
@return true if this task was cancelled before it completed
*/
boolean isCancelled();
/**
-
Returns true if this task completed.
-
Completion may be due to normal termination, an exception, or
-
cancellation – in all of these cases, this method will return
-
true.
-
@return true if this task completed
*/
boolean isDone();
/**
-
Waits if necessary for the computation to complete, and then
-
retrieves its result.
-
@return the computed result
-
@throws CancellationException if the computation was cancelled
-
@throws ExecutionException if the computation threw an
-
exception
-
@throws InterruptedException if the current thread was interrupted
-
while waiting
*/
V get() throws InterruptedException, ExecutionException;
/**
-
Waits if necessary for at most the given time for the computation
-
to complete, and then retrieves its result, if available.
-
@param timeout the maximum time to wait
-
@param unit the time unit of the timeout argument
-
@return the computed result
-
@throws CancellationException if the computation was cancelled
-
@throws ExecutionException if the computation threw an
-
exception
-
@throws InterruptedException if the current thread was interrupted
-
while waiting
-
@throws TimeoutException if the wait timed out
*/
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}
现在开始探究submit的实现原理,该代码出自AbstractExecutorService中
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
protected RunnableFuture newTaskFor(Callable callable) {
return new FutureTask(callable);
}
核心实现在ThreadPoolExecutor的execute方法
/**
-
Executes the given task sometime in the future. The task
-
may execute in a new thread or in an existing pooled thread.
-
If the task cannot be submitted for execution, either because this
-
executor has been shutdown or because its capacity has been reached,
-
the task is handled by the current {@code RejectedExecutionHandler}.
-
@param command the task to execute
-
@throws RejectedExecutionException at discretion of
-
{@code RejectedExecutionHandler}, if the task
-
cannot be accepted for execution
-
@throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
-
Proceed in 3 steps:
-
- If fewer than corePoolSize threads are running, try to
-
start a new thread with the given command as its first
-
task. The call to addWorker atomically checks runState and
-
workerCount, and so prevents false alarms that would add
-
threads when it shouldn’t, by returning false.
-
- If a task can be successfully queued, then we still need
-
to double-check whether we should have added a thread
-
(because existing ones died since last checking) or that
-
the pool shut down since entry into this method. So we
-
recheck state and if necessary roll back the enqueuing if
-
stopped, or start a new thread if there are none.
-
- If we cannot queue task, then we try to add a new
-
thread. If it fails, we know we are shut down or saturated
-
and so reject the task.
*/
int c = ctl.get();
if (workerCountOf© < corePoolSize) { // @1
if (addWorker(command, true)) // @2
return;
c = ctl.get(); //@3
}
if (isRunning© && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
代码@1,如果当前线程池中的线程数量小于核心线程数的话,尝试新增一个新的线程。所以我们把目光投入到addWorker方法中。
addWorker源码详解:
/**
-
Checks if a new worker can be added with respect to current
-
pool state and the given bound (either core or maximum). If so,
-
the worker count is adjusted accordingly, and, if possible, a
-
new worker is created and started, running firstTask as its
-
first task. This method returns false if the pool is stopped or
-
eligible to shut down. It also returns false if the thread
-
factory fails to create a thread when asked. If the thread
-
creation fails, either due to the thread factory returning
-
null, or due to an exception (typically OutOfMemoryError in
-
Thread#start), we roll back cleanly.
-
@param firstTask the task the new thread should run first (or
-
null if none). Workers are created with an initial first task
-
(in method execute()) to bypass queuing when there are fewer
-
than corePoolSize threads (in which case we always start one),
-
or when the queue is full (in which case we must bypass queue).
-
Initially idle threads are usually created via
-
prestartCoreThread or to replace other dying workers.
-
@param core if true use corePoolSize as bound, else
-
maximumPoolSize. (A boolean indicator is used here rather than a
-
value to ensure reads of fresh values after checking other pool
-
state).
-
@return true if successful
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;😉 { // @1
int c = ctl.get();
int rs = runStateOf©; // @2
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && //@3
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;😉 { //@4
int wc = workerCountOf©;
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize)) //@5
return false;
if (compareAndIncrementWorkerCount©)
break retry; // @6
c = ctl.get(); // Re-read ctl
if (runStateOf© != rs)
continue retry; //@7
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
mainLock.lock(); // @8
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int c = ctl.get();
int rs = runStateOf©;
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start(); // 运行线程 // @9
workerStarted = true;
} //@8 end
}
} finally {
if (! workerStarted)
addWorkerFailed(w); // 增加工作线程失败
}
return workerStarted;
}
代码@1,外层循环(自旋模式)
代码@2,获取线程池的运行状态
代码@3,这里的判断条件,为什么不直接写 if(rs >= SHUTDOWN) return false;而要加第二个条件,目前不明白,等在了解到参数firstTask在什么情况下为空。在这里,我们目前只要知道,只有线程池的状态为 RUNNING时,线程池才接收新的任务,去增加工作线程。
代码@4,内层循环,主要的目的就是利用CAS增加一个线程数量。
代码@5,判断当前线程池的数量,如果数量达到规定的数量,则直接返回false,添加工作线程失败。
代码@6,如果修改线程数量成功,则跳出循环,开始创建工作线程。
代码@7,如果修改线程数量不成功(CAS)有两种情况:1、线程数量变化,重试则好,2,如果线程的运行状态变化,则重新开始外层循环,重新判断addWork流程。
代码@8,在锁mainLock的保护下,完成 workers (HashSet)的维护。
接着分析一下代码@9,启动线程,执行关键的方法 runWorker方法:
/**
-
Main worker run loop. Repeatedly gets tasks from queue and
-
executes them, while coping with a number of issues:
-
- We may start out with an initial task, in which case we
-
don’t need to get the first one. Otherwise, as long as pool is
-
running, we get tasks from getTask. If it returns null then the
-
worker exits due to changed pool state or configuration
-
parameters. Other exits result from exception throws in
-
external code, in which case completedAbruptly holds, which
-
usually leads processWorkerExit to replace this thread.
-
- Before running any task, the lock is acquired to prevent
-
other pool interrupts while the task is executing, and
-
clearInterruptsForTaskRun called to ensure that unless pool is
-
stopping, this thread does not have its interrupt set.
-
- Each task run is preceded by a call to beforeExecute, which
-
might throw an exception, in which case we cause thread to die
-
(breaking loop with completedAbruptly true) without processing
-
the task.
-
- Assuming beforeExecute completes normally, we run the task,
-
gathering any of its thrown exceptions to send to
-
afterExecute. We separately handle RuntimeException, Error
-
(both of which the specs guarantee that we trap) and arbitrary
-
Throwables. Because we cannot rethrow Throwables within
-
Runnable.run, we wrap them within Errors on the way out (to the
-
thread’s UncaughtExceptionHandler). Any thrown exception also
-
conservatively causes thread to die.
-
- After task.run completes, we call afterExecute, which may
-
also throw an exception, which will also cause thread to
-
die. According to JLS Sec 14.20, this exception is the one that
-
will be in effect even if task.run throws.
-
The net effect of the exception mechanics is that afterExecute
最后
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Java开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
y of its thrown exceptions to send to
-
afterExecute. We separately handle RuntimeException, Error
-
(both of which the specs guarantee that we trap) and arbitrary
-
Throwables. Because we cannot rethrow Throwables within
-
Runnable.run, we wrap them within Errors on the way out (to the
-
thread’s UncaughtExceptionHandler). Any thrown exception also
-
conservatively causes thread to die.
-
- After task.run completes, we call afterExecute, which may
-
also throw an exception, which will also cause thread to
-
die. According to JLS Sec 14.20, this exception is the one that
-
will be in effect even if task.run throws.
-
The net effect of the exception mechanics is that afterExecute
最后
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
[外链图片转存中…(img-680wosBH-1715737675146)]
[外链图片转存中…(img-XHdilGQA-1715737675147)]
[外链图片转存中…(img-XOINCoNg-1715737675147)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Java开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!