网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
memoryCache = object : LruCache<String, Bitmap>(cacheSize) {
override fun sizeOf(key: String, value: Bitmap): Int {
// 计算 Bitmap 的大小,单位是 KB
return value.byteCount / 1024
}
}
// 获取磁盘缓存路径
val cacheDir = context.externalCacheDir?.path ?: context.cacheDir.path
val diskCacheDir = File(cacheDir + File.separator + “image_cache”)
if (!diskCacheDir.exists()) {
diskCacheDir.mkdirs()
}
diskCache = DiskLruCache.open(diskCacheDir, 1, 1, 10 * 1024 * 1024)
}
//
fun displayImage(url: String, imageView: ImageView) {
val bitmap = memoryCache.get(url)
if (bitmap != null) {
imageView.setImageBitmap(bitmap)
return
}
loadFromDiskCache(url, imageView)
loadFromNetwork(url, imageView)
}
private fun loadFromDiskCache(url: String, imageView: ImageView) {
var bitmap: Bitmap? = null
try {
val snapshot = diskCache.get(url)
if (snapshot != null) {
val inputStream = snapshot.getInputStream(0)
val fileDescriptor = (inputStream as FileInputStream).fd
bitmap = BitmapFactory.decodeFileDescriptor(fileDescriptor)
if (bitmap != null) {
memoryCache.put(url, bitmap)
imageView.setImageBitmap(bitmap)
}
}
} catch (e: IOException) {
e.printStackTrace()
}
}
private fun loadFromNetwork(url: String, imageView: ImageView) {
// 发送网络请求获取图片数据
// …
// 解码图片数据并显示
val bitmap = decodeBitmapFromData(imageData, reqWidth, reqHeight)
if (bitmap != null) {
memoryCache.put(url, bitmap)
try {
val editor = diskCache.edit(url)
if (editor != null) {
val outputStream = editor.newOutputStream(0)
bitmap.compress(Bitmap.CompressFormat.PNG, 100, outputStream)
editor.commit()
}
} catch (e: IOException) {
e.printStackTrace()
}
imageView.setImageBitmap(bitmap)
}
}
private fun decodeBitmapFromData(data: ByteArray, reqWidth: Int, reqHeight: Int): Bitmap? {
// 解码图片数据并返回 Bitmap 对象
// …
}
}
ImageLoader 类封装了图片加载的逻辑。它通过 LruCache 和 DiskLruCache 实现了冷热端分离的策略,将访问频率高的图片放入 LruCache 中,而将不常用的图片放入 DiskLruCache 中。在加载图片时,先从 LruCache 中查找图片是否已经缓存,如果已经缓存则直接显示,否则从 DiskLruCache 中查找,如果也没有找到图片,则通过网络请求获取图片并缓存到 LruCache 和 DiskLruCache 中,最后显示在 ImageView 中。
在这个例子中,重排序的实现主要体现在加载图片的顺序上,先从 LruCache 中查找缓存,然后再从 DiskLruCache 中查找缓存,最后才进行网络请求获取图片数据。这样的顺序可以最大限度地提高缓存命中率,减少网络请求的次数,同时也能够缩短图片加载的时间。
冷热端分离的实现则体现在将不常用的图片放入 DiskLruCache 中。因为 DiskLruCache 的读写速度相对较慢,所以将不常用的图片放入其中可以避免 LruCache 的缓存被占满,导致缓存淘汰频繁的问题。这样能够保证常用的图片能够始终缓存在 LruCache 中,提高缓存命中率。
其他应用场景和已用场景
1.RecyclerView 中的 ViewHolder 缓存:在 RecyclerView 中,ViewHolder 是用来复用 item 视图的。通过将频繁访问的 View 缓存起来,可以大大提高 RecyclerView 的滑动性能,特别是在数据集较大的情况下。(多布局或者评论列表类型的)
2.数据库查询:在数据库查询时,可以根据数据的使用频率将热数据和冷数据分离,并对热数据进行缓存,从而提高查询性能。
3.JIT(Just-In-Time)编译器:在 Android 中,JIT 编译器将字节码编译成本地代码,以提高应用的执行速度。重排序可以优化 JIT 编译器的代码生成过程,提高编译速度和执行速度。
4.UI 界面渲染:在 UI 界面渲染时,可以使用冷热分离的方式将常用的布局和组件缓存起来,避免每次重新渲染,从而提高界面的响应速度和性能。
5.动态加载类:在应用中使用反射动态加载类时,可以通过重排序优化类加载的过程,提高应用的响应速度。
6.预加载资源:在应用启动时,可以使用冷热分离的方式预加载一些常用的资源,避免等到需要使用时再加载,从而提高应用的启动速度和性能。
7.网络请求:在网络请求时,可以使用冷热分离的方式将常用的数据缓存起来,避免重复请求,从而提高应用的响应速度和性能。
其实玩儿的还是那个思想
总结
玩儿东西还是要弄明白这个东西的成立基础是什么,或者负面因素有哪些。比如:
- 需要有足够的数据支持冷热分离和重排序,否则这些优化可能不会带来明显的性能提升,甚至可能会造成额外的开销。
- 冷热分离和重排序的实现需要考虑数据的生命周期,避免数据被错误地缓存或销毁。
- 冷热分离和重排序可能会导致数据的展示顺序不符合用户的期望,需要进行适当的处理,以保证数据的展示效果。
- 在实现时需要考虑多线程安全问题,避免因并发访问导致的数据错乱或其他异常情况。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
613a03fab5e56a57acb)**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!