[人工智能]图像识别-YOLOV3

  1. 网络结构改进:最大改进在于网络结构,使其更适合小目标检测。特征更细致,融入多持续特征图信息预测不同规格物体;先验框更丰富,有 3 种 scale,每种 3 个规格,共 9 种;softmax 改进,用于预测多标签任务。

  1. scale 检测
    • 设计目的:为检测不同大小物体,设计 3 个 scale。
    • 经典方法

1左图:图像金字塔;右图:单一的输入;

    

2左图:对不同的特征图分别利用;右图:不同的特征图融合后进行预测;

  1. 残差连接:借鉴 resnet 思想,堆叠更多层进行特征提取,目前基本所有网络架构都采用残差连接方法,YOLO-V3 也应用了该方法。
  2. 核心网络架构
    • 架构特点:没有池化和全连接层,全部采用卷积;下采样通过 stride 为 2 实现;包含 3 种 scale,设置了更多先验框,融入当下经典做法。
  3. 先验框设计:YOLO-V2 选了 5 个先验框,YOLO-V3 增加到 9 种。在不同尺寸的特征图上,先验框大小不同,13×13 特征图上有 (116x90)、(156x198)、(373x326);26×26 特征图上有 (30x61)、(62x45)、(59x119);52×52 特征图上有 (10x13)、(16x30)、(33x23) 。
  4. softmax 层替代:物体检测任务中一个物体可能有多个标签,YOLO-V3 使用 logistic 激活函数替代 softmax 层,可预测每一个类别是 / 不是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值