HNUCM-OJ春季学期《算法分析与设计》练习13题解

图论=>并查集+Kruskal+Dijkstra

image

| 来源/分类 | 解决 |

| — | — |

| A | 迷路的牛牛 |

| B | 工作单位 |

| C | 隔离14天 |

| D | 最小生成树(Kruskal) |

| E | 搭建电路 |

| F | 单源最短路径问题 |

A:取余+模拟

AC源码:

#include <bits/stdc++.h>

using namespace std;

int main()

{

int n;

while (~scanf(“%d”,&n))

{

int a=0;

char tmp;

while (n–)

{

cin>>tmp;

if (tmp==‘L’)

{

a–;

if(a<0)

a=(a+4)%4;

}

else

{

a++;

if (a>3)

{

a=a%4;

}

}

}

if (a==0)

{

cout<<“N”<<endl;

}

if (a==1)

{

cout<<“E”<<endl;

}

if (a==2)

{

cout<<“S”<<endl;

}

if (a==3)

{

cout<<“W”<<endl;

}

}

return 0;

}

B:用并查集数集合个数

AC源码:

#include <bits/stdc++.h>

using namespace std;

const int cmax = 1e3+5;

int pa[cmax]; //pa[x]=x表示结点x的父节点是x

int rnk[cmax]; //rnk[x]=x表示结点x的子节点的层数,代表结点x的秩

int res;

// 查找结点x的父亲结点

int find_set(int x){

if(x!=pa[x])

pa[x]=find_set(pa[x]); // 带路径压缩的算法

return pa[x];

}

// 将集合合并

void union_set(int x,int y){

x=find_set(x);

y=find_set(y);

if(x==y)

return ;

res–;

if(rnk[x]>rnk[y]){

pa[y]=x;

}

else{

pa[x]=y;

if(rnk[x]==rnk[y]){

rnk[y]++;

}

}

}

int main()

{

int n,m;

res=0;

cin>>n>>m;

// 初始化每一个结点,结点i的父亲结点是他本身

for (int i = 0; i <=n ; i++)

{

pa[i]=i;

rnk[i]=0;

}

res=n;

int tmp1,tmp2;

for (int i = 0; i < m; i++)

{

scanf(“%d%d”,&tmp1,&tmp2);

union_set(tmp1,tmp2);

}

cout<<res<<endl;

return 0;

}

C:使用并查集数某一个结点所在的集合的元素的总数

AC源码

#include <bits/stdc++.h>

using namespace std;

const int cmax = 1e3+5;

int pa[cmax]; //pa[x]=x表示结点x的父节点是x

int rnk[cmax]; //rnk[x]=x表示结点x的子节点的层数,代表结点x的秩

int num[cmax]; //num[x]=k 表示结点x的数的集合元素的个数

// 查找结点x的父亲结点

int find_set(int x){

if(x!=pa[x])

pa[x]=find_set(pa[x]); // 带路径压缩的算法

return pa[x];

}

// 将集合合并

void union_set(int x,int y){

x=find_set(x);

y=find_set(y);

if(x==y)

return ;

if(rnk[x]>rnk[y]){

pa[y]=x;

num[x]+=num[y];

}

else{

pa[x]=y;

num[y]+=num[x];

if(rnk[x]==rnk[y]){

rnk[y]++;

}

}

}

int main()

{

int n,m;

cin>>n>>m;

for (int i = 0; i <=n ; i++)

{

pa[i]=i;

rnk[i]=0;

num[i]=1;

}

for(int i=0;i<m;i++){

int tmp,k1,k2;

cin>>tmp>>k1;

tmp–;

while (tmp>0)

{

cin>>k2;

union_set(k1,k2);

k1=k2;

tmp–;

}

}

cout<<num[pa[0]]<<endl;

return 0;

}

D:Kruskal算法,求图的最小生成树(MST)的权重

AC源码:

#include <bits/stdc++.h>

using namespace std;

const int cmax = 1e3+5;

struct edge

{

int x;int y;

int w;

};

bool cmp (edge m ,edge n){

return m.w<n.w;

}

int pa[cmax]; //pa[x]=x表示结点x的父节点是x

int rnk[cmax]; //rnk[x]=x表示结点x的子节点的层数,代表结点x的秩

edge a[cmax];

int sum;

// 查找结点x的父亲结点

int find_set(int x){

if(x!=pa[x])

pa[x]=find_set(pa[x]); // 带路径压缩的算法

return pa[x];

}

// 将集合合并

void union_set(int x,int y,int w){

x=find_set(x);

y=find_set(y);

if(x==y)

return ;

if(rnk[x]>rnk[y]){

pa[y]=x;

}

else{

pa[x]=y;

if(rnk[x]==rnk[y]){

rnk[y]++;

}

}

sum+=w;

}

int main()

{

ios::sync_with_stdio(false);

cin.tie(0);

int n,m;

cin>>n>>m;

for (int i = 0; i <= n; i++)

{

pa[i]=i;

rnk[i]=0;

}

for(int i=0;i<m;i++){

cin>>a[i].x>>a[i].y>>a[i].w;

}

sum=0;

sort(a,a+m,cmp);

for (int i = 0; i < m; i++)

{

union_set(a[i].x,a[i].y,a[i].w);

}

cout<<sum<<endl;

return 0;

}

E:Kruskal算法,求图的最大生成树(MST)的权重

AC源码

#include <bits/stdc++.h>

using namespace std;

const int cmax = 1e3+5;

typedef long long ll;

struct edge

最后

我一直以来都有整理练习大厂面试题的习惯,有随时跳出舒服圈的准备,也许求职者已经很满意现在的工作,薪酬,觉得习惯而且安逸。

不过如果公司突然倒闭,或者部门被裁减,还能找到这样或者更好的工作吗?

我建议各位,多刷刷面试题,知道最新的技术,每三个月可以去面试一两家公司,因为你已经有不错的工作了,所以可以带着轻松的心态去面试,同时也可以增加面试的经验。

我可以将最近整理的一线互联网公司面试真题+解析分享给大家,大概花了三个月的时间整理2246页,帮助大家学习进步。

由于篇幅限制,文档的详解资料太全面,细节内容太多,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!以下是部分内容截图:

部分目录截图

《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!
;

typedef long long ll;

struct edge

最后

我一直以来都有整理练习大厂面试题的习惯,有随时跳出舒服圈的准备,也许求职者已经很满意现在的工作,薪酬,觉得习惯而且安逸。

不过如果公司突然倒闭,或者部门被裁减,还能找到这样或者更好的工作吗?

我建议各位,多刷刷面试题,知道最新的技术,每三个月可以去面试一两家公司,因为你已经有不错的工作了,所以可以带着轻松的心态去面试,同时也可以增加面试的经验。

我可以将最近整理的一线互联网公司面试真题+解析分享给大家,大概花了三个月的时间整理2246页,帮助大家学习进步。

由于篇幅限制,文档的详解资料太全面,细节内容太多,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!以下是部分内容截图:

[外链图片转存中…(img-qEbzoWy9-1715565014905)]

[外链图片转存中…(img-MuAUnVsN-1715565014908)]

《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值