图论=>并查集+Kruskal+Dijkstra
| 来源/分类 | 解决 |
| — | — |
| D | 最小生成树(Kruskal) |
A:取余+模拟
AC源码:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n;
while (~scanf(“%d”,&n))
{
int a=0;
char tmp;
while (n–)
{
cin>>tmp;
if (tmp==‘L’)
{
a–;
if(a<0)
a=(a+4)%4;
}
else
{
a++;
if (a>3)
{
a=a%4;
}
}
}
if (a==0)
{
cout<<“N”<<endl;
}
if (a==1)
{
cout<<“E”<<endl;
}
if (a==2)
{
cout<<“S”<<endl;
}
if (a==3)
{
cout<<“W”<<endl;
}
}
return 0;
}
B:用并查集数集合个数
AC源码:
#include <bits/stdc++.h>
using namespace std;
const int cmax = 1e3+5;
int pa[cmax]; //pa[x]=x表示结点x的父节点是x
int rnk[cmax]; //rnk[x]=x表示结点x的子节点的层数,代表结点x的秩
int res;
// 查找结点x的父亲结点
int find_set(int x){
if(x!=pa[x])
pa[x]=find_set(pa[x]); // 带路径压缩的算法
return pa[x];
}
// 将集合合并
void union_set(int x,int y){
x=find_set(x);
y=find_set(y);
if(x==y)
return ;
res–;
if(rnk[x]>rnk[y]){
pa[y]=x;
}
else{
pa[x]=y;
if(rnk[x]==rnk[y]){
rnk[y]++;
}
}
}
int main()
{
int n,m;
res=0;
cin>>n>>m;
// 初始化每一个结点,结点i的父亲结点是他本身
for (int i = 0; i <=n ; i++)
{
pa[i]=i;
rnk[i]=0;
}
res=n;
int tmp1,tmp2;
for (int i = 0; i < m; i++)
{
scanf(“%d%d”,&tmp1,&tmp2);
union_set(tmp1,tmp2);
}
cout<<res<<endl;
return 0;
}
C:使用并查集数某一个结点所在的集合的元素的总数
AC源码
#include <bits/stdc++.h>
using namespace std;
const int cmax = 1e3+5;
int pa[cmax]; //pa[x]=x表示结点x的父节点是x
int rnk[cmax]; //rnk[x]=x表示结点x的子节点的层数,代表结点x的秩
int num[cmax]; //num[x]=k 表示结点x的数的集合元素的个数
// 查找结点x的父亲结点
int find_set(int x){
if(x!=pa[x])
pa[x]=find_set(pa[x]); // 带路径压缩的算法
return pa[x];
}
// 将集合合并
void union_set(int x,int y){
x=find_set(x);
y=find_set(y);
if(x==y)
return ;
if(rnk[x]>rnk[y]){
pa[y]=x;
num[x]+=num[y];
}
else{
pa[x]=y;
num[y]+=num[x];
if(rnk[x]==rnk[y]){
rnk[y]++;
}
}
}
int main()
{
int n,m;
cin>>n>>m;
for (int i = 0; i <=n ; i++)
{
pa[i]=i;
rnk[i]=0;
num[i]=1;
}
for(int i=0;i<m;i++){
int tmp,k1,k2;
cin>>tmp>>k1;
tmp–;
while (tmp>0)
{
cin>>k2;
union_set(k1,k2);
k1=k2;
tmp–;
}
}
cout<<num[pa[0]]<<endl;
return 0;
}
D:Kruskal算法,求图的最小生成树(MST)的权重
AC源码:
#include <bits/stdc++.h>
using namespace std;
const int cmax = 1e3+5;
struct edge
{
int x;int y;
int w;
};
bool cmp (edge m ,edge n){
return m.w<n.w;
}
int pa[cmax]; //pa[x]=x表示结点x的父节点是x
int rnk[cmax]; //rnk[x]=x表示结点x的子节点的层数,代表结点x的秩
edge a[cmax];
int sum;
// 查找结点x的父亲结点
int find_set(int x){
if(x!=pa[x])
pa[x]=find_set(pa[x]); // 带路径压缩的算法
return pa[x];
}
// 将集合合并
void union_set(int x,int y,int w){
x=find_set(x);
y=find_set(y);
if(x==y)
return ;
if(rnk[x]>rnk[y]){
pa[y]=x;
}
else{
pa[x]=y;
if(rnk[x]==rnk[y]){
rnk[y]++;
}
}
sum+=w;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int n,m;
cin>>n>>m;
for (int i = 0; i <= n; i++)
{
pa[i]=i;
rnk[i]=0;
}
for(int i=0;i<m;i++){
cin>>a[i].x>>a[i].y>>a[i].w;
}
sum=0;
sort(a,a+m,cmp);
for (int i = 0; i < m; i++)
{
union_set(a[i].x,a[i].y,a[i].w);
}
cout<<sum<<endl;
return 0;
}
E:Kruskal算法,求图的最大生成树(MST)的权重
AC源码
#include <bits/stdc++.h>
using namespace std;
const int cmax = 1e3+5;
typedef long long ll;
struct edge
最后
我一直以来都有整理练习大厂面试题的习惯,有随时跳出舒服圈的准备,也许求职者已经很满意现在的工作,薪酬,觉得习惯而且安逸。
不过如果公司突然倒闭,或者部门被裁减,还能找到这样或者更好的工作吗?
我建议各位,多刷刷面试题,知道最新的技术,每三个月可以去面试一两家公司,因为你已经有不错的工作了,所以可以带着轻松的心态去面试,同时也可以增加面试的经验。
我可以将最近整理的一线互联网公司面试真题+解析分享给大家,大概花了三个月的时间整理2246页,帮助大家学习进步。
由于篇幅限制,文档的详解资料太全面,细节内容太多,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!以下是部分内容截图:
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!
;
typedef long long ll;
struct edge
最后
我一直以来都有整理练习大厂面试题的习惯,有随时跳出舒服圈的准备,也许求职者已经很满意现在的工作,薪酬,觉得习惯而且安逸。
不过如果公司突然倒闭,或者部门被裁减,还能找到这样或者更好的工作吗?
我建议各位,多刷刷面试题,知道最新的技术,每三个月可以去面试一两家公司,因为你已经有不错的工作了,所以可以带着轻松的心态去面试,同时也可以增加面试的经验。
我可以将最近整理的一线互联网公司面试真题+解析分享给大家,大概花了三个月的时间整理2246页,帮助大家学习进步。
由于篇幅限制,文档的详解资料太全面,细节内容太多,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!以下是部分内容截图:
[外链图片转存中…(img-qEbzoWy9-1715565014905)]
[外链图片转存中…(img-MuAUnVsN-1715565014908)]
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!