【槐花做法大全】快来尝试这些美味佳肴!

原文地址:nchjhh.com/0508

想要在春天里品尝到独特美味的槐花佳肴吗?槐花这种常见的春季野菜,其实有着丰富的烹饪用途,不仅味道鲜美,而且营养丰富。下面我将为大家介绍几款槐花的烹饪方法,让您在家就能尝到美味佳肴。

槐花炒蛋

槐花炒蛋是一道简单又美味的家常菜。将鲜嫩的槐花洗净沥干水分,打散几个鸡蛋,加入适量盐和生抽调味,然后将槐花和蛋液一起翻炒,待熟透即可出锅。炒出的槐花蛋香味扑鼻,槐花的清香与蛋的鲜嫩相互融合,美味可口。

槐花炖鸡

槐花炖鸡是一道荤素搭配的营养佳肴。选用一只鸡肉鲜嫩的鸡,加入适量的槐花、姜片、葱段和调料,用文火炖至鸡肉入味,待汤汁浓稠即可出锅。这道菜不仅鸡肉香滑鲜嫩,而且槐花的清香更为鸡肉增添了独特风味,让人回味无穷。

槐花煎饼

槐花煎饼是一道传统的地方小吃。将槐花洗净切碎,加入面粉、水和调味料搅拌均匀,然后将面糊均匀抹在平底锅上煎烙至金黄色即可。这款煎饼香脆可口,槐花的清香与面粉的口感相得益彰,令人欲罢不能。

槐花凉拌菜

槐花凉拌菜是一道清爽开胃的凉菜。将槐花焯水后捞出沥干,加入蒜蓉、辣椒、酱油、醋等调味料拌匀即可。这道凉拌菜口感清爽爽口,槐花的清香与调味料的鲜美完美结合,让人胃口大开。

槐花烹饪,是一种对自然的尊重与感恩,也是一种对美味的追求与享受。希望大家能够尝试这些槐花佳肴的做法,体验槐花带来的独特风味,让味蕾得到满足,让心灵感受春天的温暖。让我们一起来享受这份美味吧!

num_classes: 30 project_path: "D:/pychj/pythorch" train_data_path: "DataSet/final/train" val_data_path: "DataSet/final/valid" test_data_path: "DataSet/final/test" #图片可视化分析源路径 img_path: "DataSet/final/test/0002_人参/人参31.jpg" #训练伦次 epochs: 30 #选用设备 device: 'cuda:0' #训练批次大小,防止显存溢出 batch_size: 16 #加载的权重路径 weights_path: '' #迁移学习 fine_tuning: True #优化器的选择 opt_name: 'AdamW' #线程加载 nw: 2 #模型保存路径 #vgg模型 Model_VGG: 'Model/Model_VGG/weights/VGG16_43481362425_best_model.pt' Model_AlexNet: 'Model/Model_AlexNet/weights/AlexNet_43491884900_best_model.pt' Model_MobileNet: 'Model/Model_MobileNet/weights/MobileNet_V3_Small_43544276625_best_model.pt' Model_ResNet: 'Model/Model_ResNet/weights/ResNet50_43544327450_best_model.pt' #可视化测验调用模型路径 Web_Model: 'Model/Model_VGG/weights/VGG16_43481362425_best_model.pt' #端口号 Web_Port: 8017 #不同类别的名称列表 display_labels: - '三七' - '乌梅' - '人参' - '何首乌' - '党参' - '决明子' - '小茴香' - '板蓝根' - '枸杞子' - '柴胡' - '桑葚' - '槐花' - '沉香' - '灵芝' - '甘草' - '白芍' - '白花蛇舌草' - '百合' - '穿心莲' - '红花' - '罗汉果' - '艾叶' - '茯苓' - '莲子心' - '葛根' - '虫草' - '蝉蜕' - '金银花' - '阿胶' - '陈皮' #混淆矩阵显示具数值 show_figure: false #混淆矩阵结果归一化 normalization: true 找出这里面的超参数
03-15
<think>好的,我需要帮用户提取深度学习模型训练中的超参数列表。首先,得回顾常见的超参数有哪些。用户提到了num_classes、epochs、batch_size、fine_tuning、opt_name、nw等,我需要扩展更多的相关参数。 基础超参数方面,学习率(learning_rate)肯定是核心的,还有训练轮数(num_train_epochs),批量大小(per_device_train_batch_size),权重衰减(weight_decay),这些在引用[1]的TrainingArguments里都有出现。优化器类型(opt_name)比如Adam、SGD,动量(momentum)和优化器参数如beta1、beta2也是重要的。 模型结构相关的参数,像num_classes是分类任务的类别数,预训练模型选择(pretrained_model_name)比如ResNet-18在引用[4]中提到。输入尺寸(input_size)和数据增强参数如随机裁剪、翻转等也需要考虑。 训练策略方面,微调(fine_tuning)和迁移学习相关参数,比如是否冻结层(freeze_layers)、解冻层数(unfreeze_layers)在引用[2]和[4]中涉及。早停(early_stopping_patience)、学习率调度器(lr_scheduler_type)比如余弦退火,以及混合精度训练(fp16)在引用[1]的示例里也有设置。 正则化相关的参数,除了权重衰减,还有丢弃率(dropout_rate)、标签平滑(label_smoothing)、L1/L2正则化系数。硬件相关的如设备类型(device)、并行策略(distributed_strategy)、GPU数量(nproc_per_node)也会影响训练。 验证和日志方面,评估频率(evaluation_strategy)、保存策略(save_strategy)、日志目录(output_dir)和实验名称(run_name)在引用[1]和[5]中出现。数据相关的如训练集比例(train_split_ratio)、数据路径(data_dir)、工作线程数(num_workers即nw)也是关键。 需要确保覆盖用户提到的参数,同时补充其他常用超参数。注意引用中的例子,比如引用[1]里的TrainingArguments包含多个参数,引用[2]讨论迁移学习的调整,引用[4]使用预训练模型。整理这些信息,分门别类列出,确保每个参数有简要说明,并正确标注引用来源。</think>深度学习模型训练中常见的超参数可分为以下几类,结合代码示例和引用资料进行说明: ### 一、基础训练参数 1. `num_classes`:输出层神经元数量(分类任务) ```python model = nn.Linear(512, num_classes) # 全连接层输出维度 ``` 2. `epochs`/`num_train_epochs`:训练轮次 ```python training_args = TrainingArguments(num_train_epochs=2) # [^1] ``` 3. `batch_size`:单批次样本数量 ```python training_args = TrainingArguments(per_device_train_batch_size=32) # [^1] ``` 4. `learning_rate`:学习率(控制参数更新步长) ```python training_args = TrainingArguments(learning_rate=1e-3) # [^1] ``` ### 二、优化器参数 5. `opt_name`:优化器类型(adam/sgd/rmsprop等) ```python optimizer = torch.optim.Adam(model.parameters(), lr=0.001) ``` 6. `weight_decay`:权重衰减(L2正则化系数) ```python training_args = TrainingArguments(weight_decay=0.01) # [^1] ``` 7. `momentum`:动量参数(SGD优化器专用) ```python optimizer = torch.optim.SGD(params, momentum=0.9) ``` ### 三、模型结构参数 8. `pretrained`:是否使用预训练模型 ```python pretrained_net = models.resnet18(pretrained=True) # [^4] ``` 9. `fine_tuning`:微调模式开关(True=微调全层,False=冻结部分层) ```python if not fine_tuning: for param in pretrained_net.parameters(): param.requires_grad = False # [^2] ``` ### 四、数据与硬件参数 10. `nw`/`num_workers`:数据加载线程数 ```python dataloader = DataLoader(dataset, num_workers=4) ``` 11. `device`:训练设备(cpu/cuda/mps) ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ``` ### 五、进阶训练策略 12. `warmup_steps`:学习率预热步数 13. `gradient_accumulation_steps`:梯度累积步数 ```python training_args = TrainingArguments( gradient_accumulation_steps=2) # 模拟更大batch_size ``` 14. `fp16`:混合精度训练开关 ```python training_args = TrainingArguments(fp16=True) ``` ### 六、验证与保存参数 15. `evaluation_strategy`:验证频率(epoch/steps/no) ```python training_args = TrainingArguments(evaluation_strategy="epoch") # ``` 16. `save_strategy`:模型保存策略 ```python training_args = TrainingArguments(save_strategy="epoch") # ``` 完整参数示例(基于HuggingFace格式): ```python training_args = TrainingArguments( output_dir="./train_output", # [^5] num_train_epochs=5, per_device_train_batch_size=32, learning_rate=2e-5, weight_decay=0.01, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, metric_for_best_model="accuracy", fp16=True, num_workers=4 # nw参数 ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值