2024年Go最新[Google]-再见-SharedPreferences-拥抱-Jetpack-DataStore(1),2024年最新非科班程序员求职经历分享

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

SP 不能保证类型安全

调用 getXXX() 方法的时候,可能会出现 ClassCastException 异常,因为使用相同的 key 进行操作的时候,putXXX 方法可以使用不同类型的数据覆盖掉相同的 key。

val key = “jetpack”
val sp = getSharedPreferences(“ByteCode”, Context.MODE_PRIVATE) // 异步加载 SP 文件内容

sp.edit { putInt(key, 0) } // 使用 Int 类型的数据覆盖相同的 key
sp.getString(key, “”); // 使用相同的 key 读取 Sting 类型的数据
复制代码

使用 Int 类型的数据覆盖掉相同的 key,然后使用相同的 key 读取 Sting 类型的数据,编译正常,但是运行会出现以下异常。

java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String
复制代码

SP 加载的数据会一直留在内存中

通过 getSharedPreferences() 方法加载的数据,最后会将数据存储在静态的成员变量中。

// 调用 getSharedPreferences 方法,最后会调用 getSharedPreferencesCacheLocked 方法
public SharedPreferences getSharedPreferences(File file, int mode) {

final ArrayMap<File, SharedPreferencesImpl> cache = getSharedPreferencesCacheLocked();
return sp;
}

// 通过静态的 ArrayMap 缓存 SP 加载的数据
private static ArrayMap<String, ArrayMap<File, SharedPreferencesImpl>> sSharedPrefsCache;

// 将数据保存在 sSharedPrefsCache 中
private ArrayMap<File, SharedPreferencesImpl> getSharedPreferencesCacheLocked() {

ArrayMap<File, SharedPreferencesImpl> packagePrefs = sSharedPrefsCache.get(packageName);
if (packagePrefs == null) {
packagePrefs = new ArrayMap<>();
sSharedPrefsCache.put(packageName, packagePrefs);
}

return packagePrefs;
}
复制代码

通过静态的 ArrayMap 缓存每一个 SP 文件,而每个 SP 文件内容通过 Map 缓存键值对数据,这样数据会一直留在内存中,浪费内存。

apply() 方法是异步的,可能会发生 ANR

apply() 方法是异步的,为什么还会造成 ANR 呢?曾今的字节跳动就出现过这个问题,具体详情可以点击这里前去查看 剖析 SharedPreference apply 引起的 ANR 问题 而且 Google 也明确指出了 apply() 的问题。

[图片上传中…(image-ab9199-1602236582506-4)]

简单总结一下:apply() 方法是异步的,本身是不会有任何问题,但是当生命周期处于 handleStopService() 、 handlePauseActivity() 、 handleStopActivity() 的时候会一直等待 apply() 方法将数据保存成功,否则会一直等待,从而阻塞主线程造成 ANR,一起来分析一下为什么异步方法还会阻塞主线程,先来看看 apply() 方法的实现。
frameworks/base/core/java/android/app/SharedPreferencesImpl.java

public void apply() {
final long startTime = System.currentTimeMillis();

final MemoryCommitResult mcr = commitToMemory();
final Runnable awaitCommit = new Runnable() {
@Override
public void run() {
mcr.writtenToDiskLatch.await(); // 等待

}
};
// 将 awaitCommit 添加到队列 QueuedWork 中
QueuedWork.addFinisher(awaitCommit);

Runnable postWriteRunnable = new Runnable() {
@Override
public void run() {
awaitCommit.run();
QueuedWork.removeFinisher(awaitCommit);
}
};
// 8.0 之前加入到一个单线程的线程池中执行
// 8.0 之后加入 HandlerThread 中执行写入任务
SharedPreferencesImpl.this.enqueueDiskWrite(mcr, postWriteRunnable);
}
复制代码

  • 将一个 awaitCommit 的 Runnable 任务,添加到队列 QueuedWork 中,在 awaitCommit 中会调用 await() 方法等待,在 handleStopService 、 handleStopActivity 等等生命周期会以这个作为判断条件,等待任务执行完毕
  • 将一个 postWriteRunnable 的 Runnable 写任务,通过 enqueueDiskWrite 方法,将写入任务加入到队列中,而写入任务在一个线程中执行

注意:在 8.0 之前和 8.0 之后 enqueueDiskWrite() 方法实现逻辑各不相同

在 8.0 之前调用 enqueueDiskWrite() 方法,将写入任务加入到 单个线程的线程池 中执行,如果 apply() 多次的话,任务将会依次执行,效率很低,android-7.0.0_r34 源码如下所示。

// android-7.0.0_r34: frameworks/base/core/java/android/app/SharedPreferencesImpl.java
private void enqueueDiskWrite(final MemoryCommitResult mcr,
final Runnable postWriteRunnable) {

QueuedWork.singleThreadExecutor().execute(writeToDiskRunnable);
}

// android-7.0.0_r34: frameworks/base/core/java/android/app/QueuedWork.java
public static ExecutorService singleThreadExecutor() {
synchronized (QueuedWork.class) {
if (sSingleThreadExecutor == null) {
sSingleThreadExecutor = Executors.newSingleThreadExecutor();
}
return sSingleThreadExecutor;
}
}
复制代码

通过 Executors.newSingleThreadExecutor() 方法创建了一个 单个线程的线程池,因此任务是串行的,通过 apply() 方法创建的任务,都会添加到这个线程池内。

在 8.0 之后将写入任务加入到 LinkedList 链表中,在 HandlerThread 中执行写入任务,android-10.0.0_r14 源码如下所示。

// android-10.0.0_r14: frameworks/base/core/java/android/app/SharedPreferencesImpl.java
private void enqueueDiskWrite(final MemoryCommitResult mcr,
final Runnable postWriteRunnable) {

QueuedWork.queue(writeToDiskRunnable, !isFromSyncCommit);
}

// android-10.0.0_r14: frameworks/base/core/java/android/app/QueuedWork.java

private static final LinkedList sWork = new LinkedList<>();

public static void queue(Runnable work, boolean shouldDelay) {
Handler handler = getHandler(); // 获取 handlerThread.getLooper() 生成 Handler 对象
synchronized (sLock) {
sWork.add(work); // 将写入任务加入到 LinkedList 链表中

if (shouldDelay && sCanDelay) {
handler.sendEmptyMessageDelayed(QueuedWorkHandler.MSG_RUN, DELAY);
} else {
handler.sendEmptyMessage(QueuedWorkHandler.MSG_RUN);
}
}
}
复制代码

在 8.0 之后通过调用 handlerThread.getLooper() 方法生成 Handler,任务都会在 HandlerThread 中执行,所有通过 apply() 方法创建的任务,都会添加到 LinkedList 链表中。

当生命周期处于 handleStopService() 、 handlePauseActivity() 、 handleStopActivity() 的时候会调用 QueuedWork.waitToFinish() 会等待写入任务执行完毕,我们以其中 handlePauseActivity() 方法为例。

public void handlePauseActivity(IBinder token, boolean finished, boolean userLeaving,
int configChanges, PendingTransactionActions pendingActions, String reason) {

// 确保写任务都已经完成
QueuedWork.waitToFinish();

}
}
复制代码

正如你所看到的在 handlePauseActivity() 方法中,调用了 QueuedWork.waitToFinish() 方法,会等待所有的写入执行完毕,Google 在 8.0 之后对这个方法做了很大的优化,一起来看一下 8.0 之前和 8.0 之后的区别。

注意:在 8.0 之前和 8.0 之后 waitToFinish() 方法实现逻辑各不相同

在 8.0 之前 waitToFinish() 方法只做了一件事,会一直等待写入任务执行完毕,我先来看看在 android-7.0.0_r34 源码实现。
android-7.0.0_r34: frameworks/base/core/java/android/app/QueuedWork.java

private static final ConcurrentLinkedQueue sPendingWorkFinishers =
new ConcurrentLinkedQueue();

public static void waitToFinish() {
Runnable toFinish;
while ((toFinish = sPendingWorkFinishers.poll()) != null) {
toFinish.run(); // 相当于调用 mcr.writtenToDiskLatch.await() 方法
}
}
复制代码

  • sPendingWorkFinishers 是 ConcurrentLinkedQueue 实例,apply 方法会将写入任务添加到 sPendingWorkFinishers 队列中,在 单个线程的线程池 中执行写入任务,线程的调度并不由程序来控制,也就是说当生命周期切换的时候,任务不一定处于执行状态

  • toFinish.run() 方法,相当于调用 mcr.writtenToDiskLatch.await() 方法,会一直等待

  • waitToFinish() 方法就做了一件事,会一直等待写入任务执行完毕,其它什么都不做,当有很多写入任务,会依次执行,当文件很大时,效率很低,造成 ANR 就不奇怪了,尤其像字节跳动这种大规模的 App

在 8.0 之后 waitToFinish() 方法做了很大的优化,当生命周期切换的时候,会主动触发任务的执行,而不是一直在等着,我们来看看 android-10.0.0_r14 源码实现。
android-10.0.0_r14: frameworks/base/core/java/android/app/QueuedWork.java

private static final LinkedList sFinishers = new LinkedList<>();
public static void waitToFinish() {

try {
processPendingWork(); // 主动触发任务的执行
} finally {
StrictMode.setThreadPolicy(oldPolicy);
}

try {
// 等待任务执行完毕
while (true) {
Runnable finisher;

synchronized (sLock) {
finisher = sFinishers.poll(); // 从 LinkedList 中取出任务
}

if (finisher == null) { // 当 LinkedList 中没有任务时会跳出循环
break;
}

finisher.run(); // 相当于调用 mcr.writtenToDiskLatch.await()
}
}


}
复制代码

在 waitToFinish() 方法中会主动调用 processPendingWork() 方法触发任务的执行,在 HandlerThread 中执行写入任务。

另外还做了一个很重要的优化,当调用 apply() 方法的时候,执行磁盘写入,都是全量写入,在 8.0 之前,调用 N 次 apply() 方法,就会执行 N 次磁盘写入,在 8.0 之后,apply() 方法调用了多次,只会执行最后一次写入,通过版本号来控制的。

SharedPreferences 的另外一个缺点就是 apply() 方法无法获取到操作成功或者失败的结果,而 commit() 方法是可以接收 MemoryCommitResult 里面的一个 boolean 参数作为结果,来看一下它们的方法签名。

public void apply() { … }

public boolean commit() { … }
复制代码

SP 不能用于跨进程通信

我们在创建 SP 实例的时候,需要传入一个 mode,如下所示:

val sp = getSharedPreferences(“ByteCode”, Context.MODE_PRIVATE)
复制代码

Context 内部还有一个 mode 是 MODE_MULTI_PROCESS,我们来看一下这个 mode 做了什么

public SharedPreferences getSharedPreferences(File file, int mode) {
if ((mode & Context.MODE_MULTI_PROCESS) != 0 ||
getApplicationInfo().targetSdkVersion < android.os.Build.VERSION_CODES.HONEYCOMB) {
// 重新读取 SP 文件内容
sp.startReloadIfChangedUnexpectedly();
}
return sp;
}
复制代码

在这里就做了一件事,当遇到 MODE_MULTI_PROCESS 的时候,会重新读取 SP 文件内容,并不能用 SP 来做跨进程通信。

到这里关于 SharedPreferences 部分分析完了,接下来分析一下 DataStore 为我们解决什么问题?

DataStore 解决了什么问题

Preferences DataStore 主要用来替换 SharedPreferences,Preferences DataStore 解决了 SharedPreferences 带来的所有问题

Preferences DataStore 相比于 SharedPreferences 优点

  • DataStore 是基于 Flow 实现的,所以保证了在主线程的安全性
  • 以事务方式处理更新数据,事务有四大特性(原子性、一致性、 隔离性、持久性)
  • 没有 apply() 和 commit() 等等数据持久的方法
  • 自动完成 SharedPreferences 迁移到 DataStore,保证数据一致性,不会造成数据损坏
  • 可以监听到操作成功或者失败结果

另外 Jetpack DataStore 提供了 Proto DataStore 方式,用于存储类的对象(typed objects ),通过 protocol buffers 将对象序列化存储在本地,protocol buffers 现在已经应用的非常广泛,无论是微信还是阿里等等大厂都在使用,我们在部分场景中也使用了 protocol buffers,在后续的文章会详细的分析。

注意:

Preferences DataStore 只支持 Int , Long , Boolean , Float , String 键值对数据,适合存储简单、小型的数据,并且不支持局部更新,如果修改了其中一个值,整个文件内容将会被重新序列化,可以运行 AndroidX-Jetpack-Practice/DataStoreSimple 体验一下,如果需要局部更新,建议使用 Room。

在项目中使用 Preferences DataStore

Preferences DataStore 主要应用在 MVVM 当中的 Repository 层,在项目中使用 Preferences DataStore 非常简单,只需要 4 步。

1. 需要添加 Preferences DataStore 依赖

implementation “androidx.datastore:datastore-preferences:1.0.0-alpha01”
复制代码

2. 构建 DataStore

private val PREFERENCE_NAME = “DataStore”
var dataStore: DataStore = context.createDataStore(
name = PREFERENCE_NAME
复制代码

3. 从 Preferences DataStore 中读取数据

Preferences DataStore 以键值对的形式存储在本地,所以首先我们应该定义一个 Key.

val KEY_BYTE_CODE = preferencesKey(“ByteCode”)
复制代码

这里和我们之前使用 SharedPreferences 的有点不一样,在 Preferences DataStore 中 Key 是一个 Preferences.Key<T> 类型,只支持 Int , Long , Boolean , Float , String,源码如下所示:

inline fun preferencesKey(name: String): Preferences.Key {
return when (T::class) {
Int::class -> {
Preferences.Key(name)
}
String::class -> {
Preferences.Key(name)
}
Boolean::class -> {
Preferences.Key(name)
}
Float::class -> {
Preferences.Key(name)
}
Long::class -> {
Preferences.Key(name)
}
… // 如果是其他类型就会抛出异常
}
}

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

其他类型就会抛出异常
}
}

[外链图片转存中…(img-38wXSkBI-1715640831394)]
[外链图片转存中…(img-4g6jlAMK-1715640831395)]
[外链图片转存中…(img-GutxoG6g-1715640831395)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值