2024年Go实时读取日志并写入kafka_go 批量写入kakfa(1),2024最新网易Golang面经

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取


启动



./bin/kafka-server-start.sh -daemon ./config/server.properties


5. 客户端登录zk, 查看节点信息



./bin/zookeeper-shell.sh 47.98.100.76:2181 ls /

查看kafka节点

./bin/zookeeper-shell.sh 47.98.100.76:2181 ls /brokers/ids/0


#### 实现


![在这里插入图片描述](https://img-blog.csdnimg.cn/fa86344fbdae47d2a63a27b7f03e941a.png)


###### conf 为配置文件目录


1. config.ini



[kafka]
addr=192.168.100.76:9092
topic=chao2022
[tail]
filename=./log/my.log


2. config.go  
 配置文件结构体, 将配置文件信息映射到该结构体, 方便获取值



package conf

type Cfg struct {
KafkaCfg ini:"kafka"
TailCfg ini:"tail"
}

type KafkaCfg struct {
Addr string ini:"addr"
Topic string ini:"topic"
}

type TailCfg struct {
Filename string ini:"filename"
}


###### kafka 专门往kafka写数据的模块


1. kafka.go



package kafka

import (
“fmt”
“github.com/Shopify/sarama”
)

var (
producer sarama.SyncProducer
err error
)

// Init 初始化 client
func Init(addr []string) error {
config := sarama.NewConfig()
config.Producer.RequiredAcks = sarama.WaitForAll
config.Producer.Partitioner = sarama.NewHashPartitioner // 设置选择分区的策略为Hash
config.Producer.Return.Successes = true // 成功交付的消息将在success channel返回

// 生产者
producer, err = sarama.NewSyncProducer(addr, config)
if err != nil {
	return err
}

return nil

}

func SendMsg(topic, key, value string) error {

// 构造一个消息
msg := &sarama.ProducerMessage{}
msg.Topic = topic // 指定主题Topic
msg.Value = sarama.StringEncoder(value) // 消息内容
msg.Key = sarama.StringEncoder(key) // 设置key

// 分区ID, 偏移量
pid, offset, err := producer.SendMessage(msg)
if err != nil {
	fmt.Println("send msg failed, err:", err)
	return err
}
fmt.Printf("pid:%v offset:%v\n", pid, offset)
return nil

}


producer设置ack参数


* WaitForLocal: 消息同步到master之后返回ack信号,否则抛异常使应用程序感知到并在业务中进行重试发送。这种方式一定程度保证了消息的可靠性,producer等待broker确认信号的时延也不高。
* WaitForAll: 消息同步到master且同步到所有follower之后返回ack信号,否则抛异常使应用程序感知到并在业务中进行重试发送。这样设置,在更大程度上保证了消息的可靠性,缺点是producer等待broker确认信号的时延比较高。


订阅kafka的消费者如何按照消息顺序写入mysql, Kafka的消息在一个partition中是有序的,所以只要确保发给某个人的消息都在同一个partition中即可


* 全局一个partition, 这个最简单,但是在kafka中一个partition对应一个线程,所以这种模型下Kafka的吞吐是个问题。
* 多个partition手动指定, 生产消息的时候,除了Topic和Value,我们可以通过手动指定partition,比如总共有10个分区,我们根据用户ID取余,这样发给同一个用户的消息,每次都到1个partition里面去了,消费者写入mysql中的时候,自然也是有序的。但是,因为分区总数是写死的,万一Kafka的分区数要调整呢?那不得重新编译代码?所以这个方式不够优美。
* 多个partition自动计算, kafka客户端为我们提供了这种支持。在初始化的时候,设置选择分区的策略为Hash, 然后在生成消息之前,设置消息的Key值, Kafka客户端会根据Key进行Hash,我们通过把接收用户ID作为Key,这样就能让所有发给某个人的消息落到同一个分区了,也就有序了。


###### tail 读取日志文件的模块



package tail

import (
“github.com/hpcloud/tail”
)

var (
tailObj *tail.Tail
)
// Init 初始化
func Init(path string) error {
cfg := tail.Config{
ReOpen: true, // 重新打开, 在单个日志文件写满做切隔时, 重新打开新一个文件
Follow: true, // 是否跟随
Location: &tail.SeekInfo{ // 从文件的哪个位置开始读
Offset: 0,
Whence: 2,
},
MustExist: false,
Poll: true,
}

t, err := tail.TailFile(path, cfg)
if err != nil {
	return err
}
tailObj = t
return nil

}

func Read() chan *tail.Line{
return tailObj.Lines
}


###### main



package main

import (
“fmt”
“logagent/conf”
“logagent/kafka”
“logagent/tail”
“gopkg.in/ini.v1”
“time”
)

var (
cfg conf.Cfg
err error
)

func main() {
// 0. 初始化配置文件
err = ini.MapTo(&cfg, “./conf/config.ini”)
if err != nil {
fmt.Println("init config failed: ", err.Error())
return
}

// 1. 初始化kafka连接
addr := []string{cfg.KafkaCfg.Addr}
err = kafka.Init(addr)
if err != nil {
	fmt.Println("init kafka failed: ", err.Error())
	return
}
fmt.Println("init kafka success.")

// 2. 打开日志文件读取
filename := cfg.TailCfg.Filename

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

### 回答1: 下面是一个简单的 Flink 应用程序,将 Kafka 主题中的数据读取写入到另一个 Kafka 主题: ```java import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer; import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.common.serialization.StringSerializer; import java.util.Properties; public class KafkaToFlinkToFlinkKafka { public static void main(String[] args) throws Exception { // set up the execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // configure Kafka consumer Properties consumerProps = new Properties(); consumerProps.setProperty("bootstrap.servers", "localhost:9092"); consumerProps.setProperty("group.id", "test-group"); // create a Kafka consumer data source FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("input-topic", new SimpleStringSchema(), consumerProps); // read from Kafka DataStream<String> stream = env.addSource(consumer); // configure Kafka producer Properties producerProps = new Properties(); producerProps.setProperty("bootstrap.servers", "localhost:9092"); // create a Kafka producer sink FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>("output-topic", new KafkaSerializationSchema<String>() { @Override public ProducerRecord<byte[], byte[]> serialize(String s, Long aLong) { return new ProducerRecord<>("output-topic", s.getBytes()); } }, producerProps, FlinkKafkaProducer.Semantic.EXACTLY_ONCE); // write to Kafka stream.addSink(producer); // execute the Flink job env.execute("Kafka to Flink to Kafka"); } } ``` 在上面的代码中,我们首先创建了一个 `StreamExecutionEnvironment` 对象,然后使用 Kafka 的消费者API读取一个名为 `input-topic` 的 Kafka 主题中的数据,并将其转换为 Flink 数据流。接下来,我们创建一个 Kafka 生产者,并将数据流写入名为 `output-topic` 的 Kafka 主题。最后,我们调用 `env.execute()` 来启动 Flink 作业。 请注意,上面的代码只是一个简单的入门级示例。在生产环境中,您可能需要更复杂的逻辑来处理数据并将其写入 Kafka 主题。 ### 回答2: Flink是一个流处理框架,它可以处理流式数据,并且可以与Kafka等消息队列相结合,实现数据的实时处理和分析。下面是一个使用Flink将Kafka数据写入Kafka的入门级示例。 首先,我们需要引入Flink和Kafka的相关依赖包,并创建一个Flink程序入口。 ``` import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.producer.ProducerConfig; import java.util.Properties; public class KafkaToKafkaDemo { public static void main(String[] args) throws Exception { // 创建Flink程序入口 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 设置Kafka的相关配置 Properties properties = new Properties(); properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka1:9092,kafka2:9092,kafka3:9092"); properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "flink-consumer"); properties.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka1:9092,kafka2:9092,kafka3:9092"); // 创建Kafka消费者 FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("input-topic", new SimpleStringSchema(), properties); // 添加Kafka消费者到Flink程序中 DataStream<String> input = env.addSource(kafkaConsumer); // 创建Kafka生产者 FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>("output-topic", new SimpleStringSchema(), properties); // 将输入数据写入Kafka input.addSink(kafkaProducer); // 执行Flink程序 env.execute("Kafka to Kafka Demo"); } } ``` 上述代码中,我们首先创建了一个Flink程序入口,然后设置了连接Kafka所需的配置信息。之后,我们创建了一个Kafka消费者,并将其添加到Flink程序中。接着,我们创建了一个Kafka生产者,并将输入的数据写入Kafka中。最后,我们执行了Flink程序。 需要注意的是,在上述代码中,我们需要将`kafka1:9092,kafka2:9092,kafka3:9092`替换为实际的Kafka集群地址,`input-topic`和`output-topic`替换为实际的输入和输出主题名称。 这是一个简单的入门级示例,演示了如何使用Flink将Kafka数据写入Kafka。你可以根据自己的需求,在此基础上进行更复杂的流处理操作。 ### 回答3: Flink是一个流计算引擎,可以用来处理大规模的实时数据流。而Kafka是一种高吞吐量的分布式消息队列,常用于构建数据流处理平台。那么如果想要将Kafka中的数据写入到另一个Kafka集群中,可以使用Flink来实现。下面是一个入门级的示例代码,演示了如何使用Java编写一个简单的Flink作业来实现将Kafka数据写入到另一个Kafka集群中。 首先,需要在项目的pom.xml文件中添加Flink和Kafka相关的依赖: ```xml <dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.12</artifactId> <version>1.11.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <<artifactId>flink-connector-kafka_2.12</artifactId> <version>1.11.2</version> </dependency> </dependencies> ``` 接下来,可以编写一个简单的Flink作业,该作业从一个Kafka主题中消费数据,并将其写入到另一个Kafka主题中: ```java import org.apache.flink.api.common.serialization.SimpleStringSchema; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer; import org.apache.flink.streaming.connectors.kafka.internals.KafkaSerializationSchemaWrapper; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import java.util.Properties; public class KafkaToFlinkToFlinkKafkaDemo { public static void main(String[] args) throws Exception { // 创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 设置Kafka消费者的配置 Properties consumerProps = new Properties(); consumerProps.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka_source:9092"); consumerProps.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "flink-consumer"); // 创建一个从Kafka读取数据的数据流 DataStream<String> kafkaSource = env .addSource(new FlinkKafkaConsumer<>("input_topic", new SimpleStringSchema(), consumerProps)); // 设置Kafka生产者的配置 Properties producerProps = new Properties(); producerProps.setProperty("bootstrap.servers", "kafka_target:9092"); // 创建一个写入Kafka的数据流 // 注意:这里将消息序列化为字符串,所以消费者也需要使用相同的字符串序列化器来读取数据 DataStream<String> kafkaSink = kafkaSource .addSink(new FlinkKafkaProducer<>("output_topic", new KafkaSerializationSchemaWrapper<>(new SimpleStringSchema()), producerProps)); // 执行作业并等待任务完成 env.execute("Kafka to Flink to Kafka Demo"); } } ``` 在上述代码中,首先通过FlinkKafkaConsumer创建一个从Kafka读取数据的数据流,然后通过FlinkKafkaProducer创建一个将数据写入Kafka中的数据流。注意,需要为消费者和生产者配置正确的Kafka集群地址和主题名称。 以上就是一个简单的使用Flink将Kafka数据写入到另一个Kafka集群的示例。当然,实际应用中还需要考虑更多的业务需求和数据转换操作。希望对您有帮助!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值