既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
到了今年4月, 著名人工智能团队OpenAI 也发布了新模型 DALL·E 2代,该名称来源于著名画家达利(Dalí)和机器人总动员(Wall-E), 同样支持从文本描述生成效果良好的图像.
而很多读者对AI绘画开始产生特别的关注, 或许是从以下这幅AI作品闹出的新闻开始的:
这是一幅使用AI绘画服务 MidJourney 生成的数字油画, 生成它的用户以这幅画参加美国科罗拉多州博览会的艺术比赛, 夺得了第一名. 这件事被曝光之后引发了网络上巨大的争论至今.目前 AI绘画的技术仍在不断变化发展中, 其迭代之快, 完全可以用"日新月异"来形容. 即使把今年年初的AI绘画和现在相比, 效果也有天壤之别.在年初的时候, 用Disco Diffusion可以生成一些很有氛围感的草图, 但基本还无法生成人脸; 仅仅2个月后, DALL-E 2已经可以生成准确的五官; 现在, 最强大的Stable Diffusion在画作的精致程度和作画速度上更是有了一个量级的变化.AI绘画这项技术并不是近年才有的, 但是今年以来, AI产出作品的质量以肉眼可见的速度日益提升, 而效率也从年初的一个小时缩短到现在的十几秒。
因为最近几个月,AI绘画的可用性提升了很多,提升到几乎可以威胁专业人士程度。
高赞说「主要是一篇论文的出现,即人工智能的扩散算法」,其实也没错,但对于大众而言,很难对一篇论文感知,大众对AI绘画的感知,直接来源于作品。
扩散模型(Diffusion model)其实是2015年就提出来的了。不过,扩散模型确实是AI绘画的底层技术。所以在我这篇文章中,我介绍了很多AI绘画工具,其中很多名字都带diffusion。
其中AI绘画发展得挺早,例如在 2012 年吴恩达和 Jef Dean 一起用了1.6 万个 CPU 训练了一个当时世界上最大的深度学习网络, 用来指导计算机画出猫脸图片.经过整整3天训练, 画出来了一张模糊的猫猫头:
说实话我差点没看出是个猫猫头
可以说,在这个时候的绘画AI可用性真的太低了。
当然,大家也没放弃探索。谷歌在2015年还做过一个叫deep dream的项目。画出来的图如下。
但这种还算不上AI绘画,这种叫做风格迁移(style transfer),和加滤镜差不多。毕竟在我们看来,AI绘画,应该是听从人的指令画出相应的图。
不过AI绘画第一次让人觉得可用,应该是去年(2021年),OpenAI出了Dall-E:
Dall-E可以根据文字输入生成对应输出。官方给出的示例如下:
但从官方给出的示例看得出,也是一定的实用性。不过还是偏简单的图像,不会威胁到专业画师。
而今年推出的第二代 Dall-e 2,则有了巨大的表现提升。可以看到,生成的图片不仅更加逼真,而且还有想象力。
虽然OpenAI的成果很强,但一直没开放对外使用,Dall-E 2到现在都还没开源,甚至使用权限都要排队。而去年的Dall-E,上个月底才宣布开放使用。如果早点开放,估计AI绘画热潮可以来得更早。
但大家根据扩散模型的思路,做出了很多免费可用的绘画AI,例如Disco Diffusion, Stable Diffusion等等,具体的大家可以看我写的这篇文章
桔了个仔:这篇文章带你玩转AI绘画557 赞同 · 35 评论文章
这里给大家挑一些我用这些绘画AI做的作品。
Disco Diffusion作品:
Stable Diffusion作品(更多Disco Diffusion测评见:Disco Diffusion 体验如何?你用它跑出了哪些图?)。
虽然现在AI绘画在细节处理上还有点问题,还不能完全替代专业画师,但出图效果已经让人第一印象觉得很强了,而且实用性也有了质的飞跃,在某些领域可能会让初级画手失业,因此AI绘画在最近几个月就火起来。
这篇文章介绍了市面上大部分的AI绘画,可以去了解一下。
写在前面:这是今天在中国数据内容大会上的演讲分享。我把内容归纳整理了一下,补充了一些资料,也算是对过去一段时间的回顾。这篇文章可以让大家更好的了解AI绘画如何发展到今天的,作为一个科普文,里面不涉及任何高深的技术点。
AI生成绘画本来是一个特别小众的领域,但是在今年越来越多圈子外的人都已经开始了解和使用它。那么今天我想带大家一起回顾一下AI绘画是如何开始的,又是怎么在今年突然出圈?
我们几乎每个人都会说话,但是只有极少数的一部分人会画画,我们管这一小部分会画画的人叫画师。画画在大家眼里是一件需要天赋和长期艰苦训练的事情,很多人从小就接受美术训练,花了长达7~8年的时间可能才可以达到一个及格的水平。
那么大家有没有想过有一天?只要你会说话,会使用语言,就能够创造出一副画。用语言画画这件事听起来就跟魔法一样,但是它在今年已经通过AI变成了现实。
用midjouney生成的蒸汽朋克猫咪
缘起:2015年 用文字画画
这件事的源头得从7年前,2015年开始说起,那一年出了一项人工智能的重大进展——智能图像识别。机器学习可以标记图像中的对象,然后他们还学会了将这些标签放入自然语言描述中去。
这件事让一组研究员产生了好奇。如果把这个过程翻转过来会怎么样?
我们可以把图像转换成文字,那么我们是否同样可以把文字转换成图像?
这是一项异常艰巨的工作,它跟你从搜索引擎上用文字搜索图像完全不一样。他们希望用文字去生成那些这个世界上没有的图像。
于是他们向计算机模型询问了一些他们从未见过的东西。举个例子,你见过的所有的校车都是黄色的,那么如果你写红色或者绿色的校车,它真的会尝试生成绿色么?它真的做到了。
这是一个32X32像素的小图片,糊的你几乎分辨不出来这是什么东西,但是这是一切的开始。这些研究人员在2016年的论文显示了未来的无限可能。
而现在未来已来。
如今想要得到一副图像已经可以不通过任何绘画,相机,软件或者代码等工具。你只需要输入一行文字。
2021年 Dalle 与 开源社区的程序员们
openAI与它并不open的Dalle
让我们把时间倒回去一年,回到2021年一月。一家叫openAI的人工智能公司宣布了dalle,他们声称可以从任何文字中创建图像。他们今年4月公布了dalle2,生成的图像更加的逼真和精确了。而且还可以对这些图像进行无缝编辑。
但是openai一直都没有公开dalle的算法和模型。直到现在,哪怕dalle2都开始商用了,它的限制仍然很多。
AI开源社区
所以在过去的一年里,一个由独立开发人员组成的开源社区,根据现有的所有已知的技术模型,做了各种各样的开源文本图像生成器。
在这个时期我把它称之为colab时期,这些免费开源的生成器都需要你在google colab上才可以使用,需要一定程度的代码知识,而且生成的图像还非常的抽象,像素也比较低。我周围也有几个朋友在21年开始玩AI绘画,但是都局限在非常非常小的圈子。
Dream by wombo
2021年11月的时候一款叫dream by wombo的APP出现了,它把AI的生成器封装到了APP里,这个举动让所有人都可以零学习成本的使用它。所以它从2021年底一直从国外火到了国内。
但是因为模型算法的局限性,它生成的图像质量还是比较低的,但是已经引起了大家的好奇心。
2022年:AI绘画程序爆炸式增长
2月 disco diffusion V5
在2022年的2月,由somnai等几个开源社区的工程师做了一款叫disco diffusion的AI图像生成器。从这款图像生成器开始,AI绘画得到了质的飞跃。而且它建立了完善的帮助文档和社群,disco diffusion本身也拥有非常完善强大的功能。
同样是赛博朋克城市的提示词,DD与dream的对比
3月国内开始出现disco diffusion的教程,随着这些教程的不断完善完善。越来越多的人开始使用disco diffusion创作作品,但是DD有一个致命的缺点就是它生成的画面都十分的抽象,这些画面用来生成大场景和抽象画还不错,但是几乎无法生成具象的人或者物。
3月 midjouney
这个时候一款叫midjouney的AI绘画生成工具出现了。
3月14日,mid开始内测,这是一款由disco diffusion的核心开放人员参与开发的AI生成器,mid与dd不同,它是一款搭载在discord上的聊天机器人程序,不需要之前繁琐的操作,也没有DD十分复杂的参数调节,你只需要向mid输入文字就可以生成图像。而且mid的模型更加的精准,dd只能生成抽象的风景,但是mid在人像上也能表现的比较好。
而且midjouney最大的优势其实并不是它的生成效果多么优秀,而是在于它是一个社区形式的产品。跟DD每个人都是独立创作不同,在mid上所有人的作品都是公开的,你用的提示词和相关的作品都是对社区里所有人可见的,你再也不需要问其他人这幅画用了什么提示词?这个特性让社区每天都不断的涌现越来越多优秀的作品和创意,每个人都可以尽情的学习他人的作品。
我把它称之为养蛊式创作。
4月 Dalle2
4月10日,dalle2开始内测,dalle2可以生成非常精确复合逻辑的图像。它还可以根据提示词来重新修改编辑的你图片。我们来看一段dalle2的宣传片。
我们可以从dalle2的宣传片可以看出跟之前的AI生成器都不同,无论是DD还是mid,我们都是可以看出是AI生成的,dalle2的生成图你已经无法跟人类的作品做区分了。
这是我用用dalle2创作的画,是由左边的提示词直接生成的。如果我不做说明,这幅画跟正常的人类作品几乎没有区别。
它还可以直接生成非常有质感的3D图像,这是我用dalle2直接生成的3D金属质感的十二生肖图标。
它还可自动补充无限拓展图像,所以特别适合用来生成无限流动画。类似这种。
看到这里大家可能觉得dalle2已经很完美了,但是其实直到今天,dalle2的相关技术都是对公众封闭的,而且dalle2的使用也需要申请,而且通过率很低。dalle2的研发人员觉得他们做了一款很可能用来作恶的工具,所以它设置了非常多的限制,死亡,色情,人脸,暴力,公众的人物等等都是禁止在dalle2上使用的。
跟openai这个名字不同,dalle2一点都不open。
dalle2的担忧是多余的么?不是的,这个工具确实非常可怕,不法分子可以利用它来轻松生成各种各样的假图片。但是历史的车轮会因为dalle2的这些限制停下来么?
7月 Stable diffusion
7月29日 一款叫 SD的AI生成器开始内测,它可以生成媲美dalle2的精确度的图像。共分 4 波邀请了 15000 名用户参与了内测。只用了十天它的活跃数据已经到了每天一千七百万张。
SD的背后是一家英国的人工智能方案提供商,它的slogan就是**“ai by the people,for the people”**。跟dalle2的封闭不一样,这家公司十分推崇开源。
所以在8月22号,他们内测刚开始二十多天,SD正式宣布开源,这意味着所有人都通过它开源的技术,在本地使用SD生成自己想要的图像。SD开源属性让它在短短的一个月跟各种各样的工具结合。甚至mid也使用了开源的sd模型,并且得到了巨大的反响,这个功能只内测了24小时,但是是目前mid社区里呼声最大的。24小时里mid结合SD生成了大量的作品。
国外艺术家用SD生成的画作,艺术效果上已经超越了dalle
除此之外它还被做成了figma和ps的插件,在figma的插件里你只需要简单的画出草图,就能根据文字生成非常完整的设计稿。在ps里面你可以无缝拼接补完图像。可以说现在的SD把前面所有的AI生成工具的功能全部结合到了一起,然后还把它开源了。
被做成figma插件的SD
AI绘画发展时间线
现在,我们来回顾一下这一切,2015年的时候,一群好奇的工程师,把图像识别生成文字这个过程翻转过来了,他们生成了最开始的32像素的小图片,在经过了漫长的六年的缓慢发展后,2021年openai和一群开源工程师分别用他们自己的方式完善算法和模型。到了今年2022年,这个技术突然就爆发了,对于国内的大部分接触AI绘画人来说只有短短的四个月,这四个月里发生了mid内测,mid公测,dalle2内测,dalle2商用,sd内测,sd开源等等,还有无数的AI绘画小工具。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
lle2商用,sd内测,sd开源等等,还有无数的AI绘画小工具。
[外链图片转存中…(img-AR0577yg-1715791974999)]
[外链图片转存中…(img-4WYsnuZp-1715791975000)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!