既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
提取飞行阶段为巡航阶段且飞行高度为20000ft以上工况下的引气系统相关参数,使用LSTM-AE模型计算各传感器的重构误差。根据重构误差矩阵,进一 步计算系统健康指数(Health Index, HI),这里以12个传感器的RMS重构误差之和作为HI来表示系统的健康状态。图5展示了某飞机在一年内的健康指数。从图5中可以看出,维修记录中确认的390F传感器感测线的PCV故障能够清晰识别出来
图5 引气系统PCV故障健康指数
2.2 空调系统健康监测技术
在特定条件下压缩机出口温度是能够表征空调系统热交换器工作状态的最佳参数,根据相关性计算,选择与压缩机出口温度有较强相关性的静温(SAT)、总温(TAT)、高压转子转速(N2 )和混合总管温度(MFDT)这4 个参数作为辅助监测参数,压缩机出口温度(RAMT)作为主监测参数,用于挖掘数据中隐藏的潜在信息,基于MSET(Multi variate State Estimation Technique,多元状态估计技术)算法建立空调系统热交换器基线模型。用基线模型求出的RAMT预测值与监测到的真实值进行差值计算,对偏差值进行监控。调系统压缩机出口温度平均偏差值MΔRAMT(Left ACS)序列在第657个飞行循环超过了故障预警阈值。比故障发生提前了49个飞行循环监测到异常。在监测到异常后,可以合理安排热交换器维修时间,避免由于空调系统热交换器故障导致的非计划维修。
图6 空调系统压缩机出口温度偏差值序列
2.3 APU健康评估
对于APU系统,从理论上讲,排气温度(EGT)可以准确表示涡轮机械的实际性能。但是由于外界因素的影响,例如环境温度和压力、APU工作载荷以及其他因