- 多模态AI综述
- AI模型从单模态向多模态的转变
- 多模态模型成为AI大模型的主流趋势
- 多模态AI作为实现通用人工智能(AGI)的关键步骤
- 多模态AI的五大研究方向
- 视觉理解:图像理解与预训练方法
- 视觉生成:图像、视频等内容的生成
- 统一视觉模型:面对不同任务的挑战
- LLM支持的多模态大模型:如OpenAI的GPT-4V
- 多模态Agent:结合LLM与多模态专家模型
- 市场应用实例
- AI+办公:科技巨头在AI办公领域的布局与产品
- 市场机遇分析
- 模型数据量增加与训练算力需求的增长
- 图文多模态大模型的研究方向
- 多模态理解模型(Understanding Models)
- 多模态生成模型(Generation Models)
- 通用模型(General-Purpose Models)
- 图文多模态大模型的主流技术方向
- 预训练图像编码器与大语言模型的结合
- 图文特征对齐模块的应用
- 昆仑万维自研Mental Notes技术
- 技术介绍与创新点
- 针对多模态大模型挑战的解决方案
- 昆仑万维多模态大模型Skywork-MM v1
- 架构组成与特点
- 训练阶段与方法
- VIT范式的视觉表征和预训练
- VIT:Transformer视觉表征
- MAE:激进的Mask自监督预训练
- BEIT:视觉“分词”表征预训练
- 基于VIT的多模态对齐与预训练
- CLIP:对比学习的视觉和文本对齐
- VILT:交互式的多模态对齐和融合
- 多模态大模型的探索
- Flamingo:图文多模态领域的GPT-3
- BLIP-2和InstructBLIP:冻结图像编码器和大语言模型的预训练
- Qwen-VL:阿里巴巴的多模态大模型
- LLaVA1.5:微软的多模态大模型
- VILA:英伟达的多模态大模型
- Gemini 1.0和Gemini 1.5:谷歌的多模态大模型
- LWM:超长上下文理解的多模态大模型
- 总结
- 回顾多模态技术的发展历程
- 对未来多模态大模型技术的展望
多模态知识图谱
- 多模态信息处理前沿综述 应用、融合和预训练.pdf
- 噪声的力量 迈向统一的多模态知识图表示框架 - NET.pdf
- 基于多模态知识图谱的中文跨模态实体对齐方法.pdf
- 多模态知识图谱在农业中的研究进展.pdf
- 多模态数据的洪涝灾害知识图谱构建与应用.pdf
- 基于多模态模式迁移的知识图谱实体配图.pdf
- 中科睿途商业融资计划书自研多模态AI技术,同时结合大数据、多模态知识图谱等技术,提供一站式智能化产品、解决方案和配套服务.pdf
- OpenGPT:多模态大模型推理框架.pdf
- 基于LEBERT 的多模态领域知识图谱构建.pdf
- 「AI is Everywhere」专场- OpenGPT:多模态大模型推理框架.pdf
- 多模态大模型赋能,视觉龙头再启航.pdf
- 多模态知识学习2023.pdf
- 释放不平衡模态信息的力量,实现多模态知识图谱补全.pdf
- 多模态AI研究框架2023.pdf
- 多模态知识学习.pdf
- 多模态知识图谱的管理与分析2023.pdf
- 基于多模态智能对话机器人的糖尿病健康管理服务平台应用研究.pdf
- 中文多模态知识库构建.pdf
AI多模态大模型企业20强:
多模态有望提升原有AI产品在场景中的表现:
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
-END-
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
最后
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数网络安全工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上网络安全知识点!真正的体系化!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上网络安全知识点!真正的体系化!**
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!