网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
(一)fft函数计算得到的Y是输入信号x的频谱吗?如果不是还要经过怎样的变换?为什么要除以N。
(二)如何计算Y对应的频率f,并绘制(f,Y)频谱图?
(三)如何根据离散信号的长度确定n的数值?
下面以MATLAB帮助文档中的例子来一一看这几个问题。
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t)); % Sinusoids plus noise
subplot(2,1,1)
plot(Fs*t(1:50),x(1:50))
title('Sinusoids Signal')
xlabel('time (milliseconds)')
subplot(2,1,2)
plot(Fs*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L; % (1)
f = Fs/2*linspace(0,1,NFFT/2+1);
% Plot single-sided amplitude spectrum.
figure
plot(f,2*abs(Y(1:NFFT/2+1))) % (2)
title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')
运行结果:
1、关于问题(一)
程序(1)处为何要除以信号的采样长度L?
由Fourier变换对
可知,fft函数直接计算得到的X(k)并不是频谱幅值。
在x(j)的Fourier级数(3)中,谐波分量
对应的幅值为X(k)/N,因此必须对fft得到的结果除以离散信号的长度N才能得到频谱幅值。
2、关于问题(三)
程序(1)处,fft函数的第二个参数NFFT为何取值


**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618668825)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**