网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
如果只是数据比较少的,我们可以排序找到前几的数据,但是实际应用中我们时常都会面对海量的数据,大到内存无法全部加载,这就需要我们用数据结构中的堆来解决
基本思路
- 用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
- 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
时间复杂度的计算
然后要遍历数据,最坏的情况是每个元素都与堆顶比较并排序,需要堆化n次
每次最差都下调高度次,而高度为log(k),所以是O(nlog(k))
因此总复杂度是O(k+nlog(k)),也就是O(nlogk)
代码的实现
#include<stdio.h>
#include<stdlib.h>
void swap(int\* a, int\* b)
{
int tem = \*a;
\*a = \*b;
\*b = tem;
}
void AdjustDown(int\* arr ,int n, int location) //在location位置向下调整
{
int child = location \* 2 + 1;
while (child < n)
{
if (child + 1 < n && arr[child] > arr[child + 1])
{
child++;
}
if (arr[child] < arr[location]) //小堆
{
swap(&arr[child], &arr[location]);
location = child;
child = location \* 2 + 1;
}
else
break;
}
}
int\* TopK(int\* arr, int k,int n)
{
int\* brr = (int\*)malloc(sizeof(int) \* k);
for (int i = 0; i < k; i++)//先建堆
{
brr[i] = arr[i];
}
![img](https://img-blog.csdnimg.cn/img_convert/3df45678b0ac53ebb78623c1fc9430b4.png)
![img](https://img-blog.csdnimg.cn/img_convert/41509d79975a9a8e1591338d152c832e.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618668825)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
ics/618668825)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**