数据结构从入门到精通(第六篇) :堆的应用和深度解析(解决Top-K问题)_数据结构 堆 解决什么问题(2)

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

在这里插入图片描述

在这里插入图片描述

如果只是数据比较少的,我们可以排序找到前几的数据,但是实际应用中我们时常都会面对海量的数据,大到内存无法全部加载,这就需要我们用数据结构中的堆来解决

基本思路

  1. 用数据集合中前K个元素来建堆

前k个最大的元素,则建小堆
前k个最小的元素,则建大堆

  1. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

时间复杂度的计算

在这里插入图片描述

然后要遍历数据,最坏的情况是每个元素都与堆顶比较并排序,需要堆化n次

每次最差都下调高度次,而高度为log(k),所以是O(nlog(k))

因此总复杂度是O(k+nlog(k)),也就是O(nlogk)

代码的实现

#include<stdio.h>
#include<stdlib.h>
void swap(int\* a, int\* b)
{
	int tem = \*a;
	\*a = \*b;
	\*b = tem;
}
void AdjustDown(int\*  arr ,int n, int location) //在location位置向下调整
{
	int child = location \* 2 + 1;

	while (child < n)
	{
		if (child + 1 < n && arr[child] > arr[child + 1])
		{
			child++;
		}

		if (arr[child] < arr[location]) //小堆
		{
			swap(&arr[child], &arr[location]);
			location = child;
			child = location \* 2 + 1;
		}
		else
			break;
	}
	
}
int\* TopK(int\* arr, int k,int n)
{
	int\* brr = (int\*)malloc(sizeof(int) \* k);
	for (int i = 0; i < k; i++)//先建堆
	{
		brr[i] = arr[i];
	}


![img](https://img-blog.csdnimg.cn/img_convert/3df45678b0ac53ebb78623c1fc9430b4.png)
![img](https://img-blog.csdnimg.cn/img_convert/41509d79975a9a8e1591338d152c832e.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618668825)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

ics/618668825)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值