既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
print('features:', features[0],'\nlabel:', labels[0])
'''
features: tensor([ 2.1714, -0.6891])
label: tensor([10.8673])
'''
d2l.set_figsize()
d2l.plt.scatter(d2l.numpy(features[:, 1]), d2l.numpy(labels), 1);
读取小批量数据集:
#每次抽取一批量样本
def data_iter(batch_size, features, labels):#步长、特征、标签
num_examples = len(features)#特征个数
indices = list(range(num_examples))
random.shuffle(indices)# 这些样本是随机读取的,没有特定的顺序,打乱顺序
for i in range(0, num_examples, batch_size):#随机访问,步长为batch_size
batch_indices = d2l.tensor(
indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
定义模型:
#定义模型
def linreg(X, w, b):
"""线性回归模型"""
return d2l.matmul(X, w) + b
定义损失函数:
#定义损失和函数
def squared_loss(y_hat, y): #@save
"""均方损失"""
return (y_hat - d2l.reshape(y, y_hat.shape)) ** 2 / 2
定义优化算法(小批量随机梯度下降):
#定义优化算法 """小批量随机梯度下降"""
def sgd(params, lr, batch_size): #参数、lr学习率、
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
模型训练:
#训练
lr = 0.03#学习率
num_epochs = 3#数据扫三遍
net = linreg#模型
loss = squared_loss#损失函数
#初始化模型参数
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)#权重
b = torch.zeros(1, requires_grad=True)#b全赋为0
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):#拿出一批量x,y
l = loss(net(X, w, b), y) # X和y的小批量损失,实际的和预测的
# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
# 并以此计算关于[w,b]的梯度
l.sum().backward()
sgd([w, b], lr, batch_size) # 使用参数的梯度更新参数
with torch.no_grad():
train_l = loss(net(features, w, b), labels)
print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
'''
epoch 1, loss 0.037302
epoch 2, loss 0.000140
epoch 3, loss 0.000048
'''
print(f'w的估计误差: {true_w - d2l.reshape(w, true_w.shape)}')
print(f'b的估计误差: {true_b - b}')
'''
w的估计误差: tensor([0.0006, 0.0001], grad_fn=<SubBackward0>)
b的估计误差: tensor([-0.0003], grad_fn=<RsubBackward1>)
![img](https://img-blog.csdnimg.cn/img_convert/2fe890585a7aa4ab9352989375c06b33.png)
![img](https://img-blog.csdnimg.cn/img_convert/ae0e76f7be49cfaa901dbe06b08416b1.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618668825)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
et/topics/618668825)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**