2024年最全二叉树的链式结构(C语言版)_c 语言 二叉树 链表结构,2024年最新深入讲解C C++

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

+ [🍅2.2 前序代码演示及递归图解](#22__71)
+ [🍆2.3 中序代码演示及递归图解](#23__89)
+ [🍇2.4 后序代码演示及递归图解](#24__106)
+ [🍈2.5 层序遍历](#25__123)
+ [🌟2.6 判断一棵二叉树是否为完全二叉树](#26__279)

💒1.前言

以前我们学习顺序表、链表和堆时,一上来就是学习它们的增删查改等接口函数,但是普通的链式二叉树的增删查改没有意义。如果是为了单纯存储数据,不如使用线性表。我们学习链式二叉树是为了更好地控制它的结构,为后续学习更复杂的搜索二叉树打基础,而且很多二叉树oj算法题都出在普通二叉树上。
在这里插入图片描述

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

typedef int BTDataType;

typedef struct BinaryTreeNode
{
	struct BinaryTreeNode\* left;
	struct BinaryTreeNode\* right;
	BTDataType data;
}BTNode;

BTNode\* BuyBTNode(BTDataType x)
{
	BTNode\* node = (BTNode\*)malloc(sizeof(BTNode));
	if (node == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}

	node->data = x;
	node->left = node->right = NULL;
	return node;
}

BTNode\* CreatBinaryTree()
{
	BTNode\* node1 = BuyBTNode(1);
	BTNode\* node2 = BuyBTNode(2);
	BTNode\* node3 = BuyBTNode(3);
	BTNode\* node4 = BuyBTNode(4);
	BTNode\* node5 = BuyBTNode(5);
	BTNode\* node6 = BuyBTNode(6);

	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;

	return node1;
}

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。
再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:

  1. 空树
  2. 非空:根节点,根节点的左子树、根节点的右子树组成的 在这里插入图片描述
    从图中可以看出根节点的左子树和右子树又可以被分为根、根的左子树、根的右子树。因此二叉树定义是递归式的,后序基本操作中基本都是按照该概念实现的。

🌟2二叉树的遍历

🌻2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:

  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Rightsubtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
在这里插入图片描述

🍅2.2 前序代码演示及递归图解

void PrevOrder(BTNode\* root) 
{
	if (root == NULL) 
	{
		printf("NULL ");
		return;
	}
	printf("%d ", root->data);
	PrevOrder(root->left);
	PrevOrder(root->right);
}

在这里插入图片描述
在这里插入图片描述

🍆2.3 中序代码演示及递归图解

void InOrder(BTNode\* root) 
{
	if (root == NULL) 
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}

在这里插入图片描述
在这里插入图片描述

🍇2.4 后序代码演示及递归图解

void PostOrder(BTNode\* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->data);
}

在这里插入图片描述
在这里插入图片描述

🍈2.5 层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
思路:

  1. 先把根入队列,借助队列先进先出的性质。
  2. 上一层节点出的时候,带下一层的节点进去。
    在这里插入图片描述
//C语言实现队列
/\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*/
typedef BTNode\* QDataType;
typedef struct QueueNode
{
	QDataType data;
	struct QueueNode\* next;
}QNode;

typedef struct Queue
{
	QNode\* head;
	QNode\* tail;
}Queue;

void QueueInit(Queue\* pq);
void QueueDestroy(Queue\* pq);
void QueuePush(Queue\* pq, QDataType x);
void QueuePop(Queue\* pq);
bool QueueEmpty(Queue\* pq);
size\_t QueueSize(Queue\* pq);
QDataType QueueFront(Queue\* pq);
QDataType QueueBack(Queue\* pq);

void QueueInit(Queue\* pq)
{
	assert(pq);
	pq->head = pq->tail = NULL;
}

void QueueDestroy(Queue\* pq)
{
	assert(pq);
	QNode\* cur = pq->head;
	while (cur)
	{
		QNode\* next = cur->next;
		free(cur);
		cur = next;
	}

	pq->head = pq->tail = NULL;
}

void QueuePush(Queue\* pq, QDataType x)
{
	assert(pq);
	QNode\* newnode = (QNode\*)malloc(sizeof(QNode));
	assert(newnode);

	newnode->data = x;
	newnode->next = NULL;

	if (pq->tail == NULL)
	{
		assert(pq->head == NULL);
		pq->head = pq->tail = newnode;
	}
	else
	{
		pq->tail->next = newnode;
		pq->tail = newnode;
	}
}

void QueuePop(Queue\* pq)
{
	assert(pq);
	assert(pq->head && pq->tail);

	if (pq->head->next == NULL)
	{
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else
	{
		QNode\* next = pq->head->next;
		free(pq->head);
		pq->head = next;
	}
}

bool QueueEmpty(Queue\* pq)
{
	assert(pq);
	return pq->head == NULL;
}

size\_t QueueSize(Queue\* pq)
{
	assert(pq);
	QNode\* cur = pq->head;
	size\_t size = 0;
	while (cur)
	{
		size++;
		cur = cur->next;
	}

	return size;
}

QDataType QueueFront(Queue\* pq)
{
	assert(pq);
	assert(pq->head);

	return pq->head->data;
}

QDataType QueueBack(Queue\* pq)
{
	assert(pq);
	assert(pq->tail);

	return pq->tail->data;
}
/\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*/

// 层序遍历
void LevelOrder(BTNode\* root)
{
	Queue q;
	QueueInit(&q);
	if (root)
	{
		QueuePush(&q, root);
	}
	while (!QueueEmpty(&q))
	{
		BTNode\* front = QueueFront(&q);
		QueuePop(&q);
		printf("%d ", front->data);
		if (front->left)
		{
			QueuePush(&q, front->left);
		}
		if (front->right)
		{
			QueuePush(&q, front->right);
		}
	}
	printf("\n");
	QueueDestroy(&q);
}

在这里插入图片描述

🌟2.6 判断一棵二叉树是否为完全二叉树

一棵深度为k的有n个结点的 二叉树 ,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与 满二叉树
中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

号为i(1≤i≤n)的结点与 满二叉树

中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。

[外链图片转存中…(img-DnOY0VUR-1715759146931)]
[外链图片转存中…(img-uYmoRCah-1715759146931)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值