网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
+ [🍅2.2 前序代码演示及递归图解](#22__71)
+ [🍆2.3 中序代码演示及递归图解](#23__89)
+ [🍇2.4 后序代码演示及递归图解](#24__106)
+ [🍈2.5 层序遍历](#25__123)
+ [🌟2.6 判断一棵二叉树是否为完全二叉树](#26__279)
💒1.前言
以前我们学习顺序表、链表和堆时,一上来就是学习它们的增删查改等接口函数,但是普通的链式二叉树的增删查改没有意义。如果是为了单纯存储数据,不如使用线性表。我们学习链式二叉树是为了更好地控制它的结构,为后续学习更复杂的搜索二叉树打基础,而且很多二叉树oj算法题都出在普通二叉树上。
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
struct BinaryTreeNode\* left;
struct BinaryTreeNode\* right;
BTDataType data;
}BTNode;
BTNode\* BuyBTNode(BTDataType x)
{
BTNode\* node = (BTNode\*)malloc(sizeof(BTNode));
if (node == NULL)
{
printf("malloc fail\n");
exit(-1);
}
node->data = x;
node->left = node->right = NULL;
return node;
}
BTNode\* CreatBinaryTree()
{
BTNode\* node1 = BuyBTNode(1);
BTNode\* node2 = BuyBTNode(2);
BTNode\* node3 = BuyBTNode(3);
BTNode\* node4 = BuyBTNode(4);
BTNode\* node5 = BuyBTNode(5);
BTNode\* node6 = BuyBTNode(6);
node1->left = node2;
node1->right = node4;
node2->left = node3;
node4->left = node5;
node4->right = node6;
return node1;
}
注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。
再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:
- 空树
- 非空:根节点,根节点的左子树、根节点的右子树组成的
从图中可以看出根节点的左子树和右子树又可以被分为根、根的左子树、根的右子树。因此二叉树定义是递归式的,后序基本操作中基本都是按照该概念实现的。
🌟2二叉树的遍历
🌻2.1 前序、中序以及后序遍历
学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:
- 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
- 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
- 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Rightsubtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
🍅2.2 前序代码演示及递归图解
void PrevOrder(BTNode\* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
printf("%d ", root->data);
PrevOrder(root->left);
PrevOrder(root->right);
}
🍆2.3 中序代码演示及递归图解
void InOrder(BTNode\* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
InOrder(root->left);
printf("%d ", root->data);
InOrder(root->right);
}
🍇2.4 后序代码演示及递归图解
void PostOrder(BTNode\* root)
{
if (root == NULL)
{
printf("NULL ");
return;
}
PostOrder(root->left);
PostOrder(root->right);
printf("%d ", root->data);
}
🍈2.5 层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
思路:
- 先把根入队列,借助队列先进先出的性质。
- 上一层节点出的时候,带下一层的节点进去。
//C语言实现队列
/\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*/
typedef BTNode\* QDataType;
typedef struct QueueNode
{
QDataType data;
struct QueueNode\* next;
}QNode;
typedef struct Queue
{
QNode\* head;
QNode\* tail;
}Queue;
void QueueInit(Queue\* pq);
void QueueDestroy(Queue\* pq);
void QueuePush(Queue\* pq, QDataType x);
void QueuePop(Queue\* pq);
bool QueueEmpty(Queue\* pq);
size\_t QueueSize(Queue\* pq);
QDataType QueueFront(Queue\* pq);
QDataType QueueBack(Queue\* pq);
void QueueInit(Queue\* pq)
{
assert(pq);
pq->head = pq->tail = NULL;
}
void QueueDestroy(Queue\* pq)
{
assert(pq);
QNode\* cur = pq->head;
while (cur)
{
QNode\* next = cur->next;
free(cur);
cur = next;
}
pq->head = pq->tail = NULL;
}
void QueuePush(Queue\* pq, QDataType x)
{
assert(pq);
QNode\* newnode = (QNode\*)malloc(sizeof(QNode));
assert(newnode);
newnode->data = x;
newnode->next = NULL;
if (pq->tail == NULL)
{
assert(pq->head == NULL);
pq->head = pq->tail = newnode;
}
else
{
pq->tail->next = newnode;
pq->tail = newnode;
}
}
void QueuePop(Queue\* pq)
{
assert(pq);
assert(pq->head && pq->tail);
if (pq->head->next == NULL)
{
free(pq->head);
pq->head = pq->tail = NULL;
}
else
{
QNode\* next = pq->head->next;
free(pq->head);
pq->head = next;
}
}
bool QueueEmpty(Queue\* pq)
{
assert(pq);
return pq->head == NULL;
}
size\_t QueueSize(Queue\* pq)
{
assert(pq);
QNode\* cur = pq->head;
size\_t size = 0;
while (cur)
{
size++;
cur = cur->next;
}
return size;
}
QDataType QueueFront(Queue\* pq)
{
assert(pq);
assert(pq->head);
return pq->head->data;
}
QDataType QueueBack(Queue\* pq)
{
assert(pq);
assert(pq->tail);
return pq->tail->data;
}
/\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*/
// 层序遍历
void LevelOrder(BTNode\* root)
{
Queue q;
QueueInit(&q);
if (root)
{
QueuePush(&q, root);
}
while (!QueueEmpty(&q))
{
BTNode\* front = QueueFront(&q);
QueuePop(&q);
printf("%d ", front->data);
if (front->left)
{
QueuePush(&q, front->left);
}
if (front->right)
{
QueuePush(&q, front->right);
}
}
printf("\n");
QueueDestroy(&q);
}
🌟2.6 判断一棵二叉树是否为完全二叉树
一棵深度为k的有n个结点的 二叉树 ,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与 满二叉树
中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
号为i(1≤i≤n)的结点与 满二叉树
中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。
[外链图片转存中…(img-DnOY0VUR-1715759146931)]
[外链图片转存中…(img-uYmoRCah-1715759146931)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新