网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
Case 1: 1
Case 2: 27
Case 3: 14
这个题一开始拿到手都没怎么看明白,然后朋友说紫书上有这个题,去翻了翻,发现这个题的规律所在了,
紫书上的思路是:将整个区域分为上下两块,分别求最上面若干行和最下面若干行的红色气球数,其实我们直接定一个方向求解就好了
AC思路:定方向为向上求解,分别求出B行,A行以上有多少气球,然后用后者减去前者的上一行,即f(b)-f(a-1),得到答案
对于f函数,可以找到这样的规律:
当我们需要求解的行数i小于等于2^(k-1)时,所得的红气球数即为(k-1)时刻的红气球数
当我们需要求解的行数i大于2(k-1)时,所得的红气球数位2*(k-1)时刻的红气球数+(k-1)时刻(i-2(k-1))行所包含的红气球数
其实拿题目所给的图来讲,就会发现,eg 第三张图片,前4行所包含的红气球总数为第二张图片的2倍,大于4行往下的气球数,每一行包含的红气球数和第二张图片每一行所包含的红气球数一致,所以用递归能够求解出来。
注意一点优化,每一个完整的区域,即k时刻全部的红色气球数量为3的k次方个,详情看代码。
AC代码:
#include<cstdio>
#include<algorithm>
#include<set>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
long long san[35]={1};
long long f(int k,int i){
if(i<=0)
return 0;
if(k==0)
return 1;
if(i<=pow(2,k-1))
return 2*f(k-1,i);
else
return 2*san[k-1]+f(k-1,i-pow(2,k-1));//根据上面的讲解,其实这里可以写成2*f(k-1,pow(2,k-1))+f(k-1,i-pow(2,k-1)),但是提交的时候会超时,后来发现可以直接算出来就没必要用递归来求了
}
int main ()
{
int t;
scanf("%d",&t);
int cou=1;
for(int i=1;i<=30;i++)
san[i]=3*san[i-1];
while(t--){
int k,a,b;
scanf("%d%d%d",&k,&a,&b);
printf("Case %d: %lld\n",cou++,f(k,b)-f(k,a-1));
}
}
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!