C语言每日一练——第63天:狼追兔子问题_一只兔子躲进了 10 个环形分布的洞的某一个,狼在第一个洞没有找到兔子,就隔一个洞

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

题目描述

一只兔子躲进了10个环形分布的洞中的一个。狼在第一个洞中没有找到兔子,就隔一个洞,到第3个洞去找;也没有找到,就隔2个洞,到第6个洞去找;以后每次多一个洞去找兔子……这样下去,如果一直找不到兔子,请问兔子可能在哪个洞中?

问题分析

思路:
定义一个数组hole[10]hole[0]对应第一个洞,初始化时将数组值全部设置为0。在一个循环中按照题目规定的顺序给数组hole[i]赋值——将狼找过的洞对应的数组hole[i]赋值为1。

由于洞是环形分布的,所以我选择用while循环,循环因子i代表洞的编号,i每次增加的值设为cnt(初始值为2),每循环一次,cnt都加1,即i += cnt++;i必须在0~9的范围内,所以还需要使用i %= 10;i对10进行取余。

这道题的规律不好推算(下文我进行了简单的推算),但我们可以限定狼找兔子的最大次数,即循环次数,现实中狼也不可能永远守在兔子窝旁边吧。。。
最后,遍历整个hole数组,如果值为0,说明没被狼找过,兔子可能在该洞中。

代码实现

#define HOLE\_NUMBER 10 //洞的数量
#define MAX\_SEARCH\_TIMES 10000 //最大寻找次数

#include <stdio.h>

int main()
{
    int hole[HOLE_NUMBER] = {0};  //全部初始为0
    int i = 0, cnt = 2;           //隔一个洞,所以cnt=2
    while(cnt < MAX_SEARCH_TIMES + 2)
    {
        hole[i % HOLE_NUMBER] = 1; //1表示狼已经找过该洞
        i += cnt++;                //狼到i洞去找兔子,cnt表示下一次要隔几个洞
    }
    for(i = 0; i < HOLE_NUMBER; i++)
        if(hole[i] == 0)          //0表示没被狼找过
            printf("兔子可能躲在第%d个洞中。\n", i + 1);
    return 0;
}

运行结果

在这里插入图片描述


补充:

  • 网上有一些人是使用递归函数实现的,但其实原理都一样,只是实现方式不同。
  • 既然狼总是找不到兔子,说明在某次寻找之后,狼就进入了一个无限重复的循环当中,那么到底是从哪次开始的呢?
    这应该算是一个数学问题,根据题意,我们可以得出一个递归公式f(n)=f(n-1)+n (n > 1)f(n)表示第n次找的洞,目前已知f(1)=1
    由于本人数学分析能力不是很强,所以我直接使用笨方法——列举找规律
    当我列到21次时,发现开始重复了:
    前20项:1 3 6 10 5 1 8 6 5 5 6 8 1 5 10 6 3 1 10 10
    20项后:1 3 6 10...
    也就是说我程序中的MAX_SEARCH_TIMES不用设置成那么大的值,设置为20即可。

网上参考

原文链接:http://c.biancheng.net/cpp/html/3367.html
原文有详细的思路讲解(思路和我的大体相同,应该说我参考了他的思路)

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值