图像的形态学应用(击中 不击中运算和细化处理)之c++实现(qt + 不调包

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新

需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)

如果你需要这些资料,可以戳这里获取

for (int y = sizeKernel / 2; y < image->height() - sizeKernel / 2; y++)
{
	for (int x = sizeKernel / 2; x < image->width() - sizeKernel / 2; x++)
	{
		int kr = 255;
		int kg = 255;
		int kb = 255;
		for (int j = -sizeKernel / 2; j <= sizeKernel / 2; j++)
		{
			for (int i = -sizeKernel / 2; i <= sizeKernel / 2; i++)
			{
				color = QColor(image->pixel(x + i, y + j));
				while (color.red() < kr && kernel[sizeKernel / 2 + i][sizeKernel / 2 + j])
				{
					kr = color.red();
				}
				while (color.green() < kg && kernel[sizeKernel / 2 + i][sizeKernel / 2 + j])
				{
					kg = color.green();
				}
				while (color.blue() < kb && kernel[sizeKernel / 2 + i][sizeKernel / 2 + j])
				{
					kb = color.blue();
				}
			}
		}
		newImage->setPixel(x, y, qRgb(kr, kg, kb));
	}
}

/*kernel1腐蚀操作*/
for (int y = sizeKernel / 2; y < image->height() - sizeKernel / 2; y++)
{
	for (int x = sizeKernel / 2; x < image->width() - sizeKernel / 2; x++)
	{
		int kr = 255;
		int kg = 255;
		int kb = 255;
		for (int j = -sizeKernel / 2; j <= sizeKernel / 2; j++)
		{
			for (int i = -sizeKernel / 2; i <= sizeKernel / 2; i++)
			{
				color = QColor(image->pixel(x + i, y + j));
				while (color.red() < kr && kernel1[sizeKernel / 2 + i][sizeKernel / 2 + j])
				{
					kr = color.red();
				}
				while (color.green() < kg && kernel1[sizeKernel / 2 + i][sizeKernel / 2 + j])
				{
					kg = color.green();
				}
				while (color.blue() < kb && kernel1[sizeKernel / 2 + i][sizeKernel / 2 + j])
				{
					kb = color.blue();
				}
			}
		}
		newImage1->setPixel(x, y, qRgb(kr, kg, kb));
	}
}

/*一一检测像素,将符合模板kernel但不符合kernel1的像素填写白色*/
for (int y = 0; y<image->height(); y++)
{
	for (int x = 0; x<image->width(); x++)
	{
		color = QColor(newImage->pixel(x, y));
		newcolor = QColor(newImage1->pixel(x, y));
		if (color.red() > 100 && newcolor.red() < 100)
		{
			r = 255;
		}
		else
		{
			r = 0;
		}
		if (color.green() > 100 && newcolor.green() < 100)
		{
			g = 255;
		}
		else
		{
			g = 0;
		}
		if (color.blue() > 100 && newcolor.blue() < 100)
		{
			b = 255;
		}
		else
		{
			b = 0;
		}
		newImage2->setPixel(x, y, qRgb(r, g, b));
	}
}
delete newImage;
delete newImage1;
return newImage2;

}


#### **2.细化处理**


    图像的细化的操作实际是一个逐渐腐蚀的过程,每次从图像的边缘腐蚀掉一个像素,直到不能腐蚀为止。算法的关键是任何在每次腐蚀中判断像素点是否可以清除。细化有两条准则:1)细化不能缩短图像骨架的长度;2)细化不能将图像分解成不同部分。其两条准则的详细步骤如下:


    1)计算当前像素邻域内8个方向的可见像素数目,如果少于2个像素,则删除此像素会缩短图像骨架长度;若多于6个像素,则删除此像素会改变骨架的几何形状


    2)计算当前像素周围邻域内的区域数目,如果多余1个,那么删除中心像素会将目标图像分解成不同部分



/图像的细化/
QImage* MainWindow::Thining(QImage* image)
{
QImage* newImage = new QImage(image->width(), image->height(), QImage::Format_ARGB32);
int count;
int finish = 0;
int nb[5][5];
int r = 0;
int b = 0;
int g = 0;
QColor color;
/二值化/

for (int y = 0; y<image->height(); y++)
{
	for (int x = 0; x<image->width(); x++)
	{
		color = QColor(image->pixel(x, y));


		color = QColor(image->pixel(x, y));
		if (color.red()< 100)
		{
			r = 0;
		}
		else
		{
			r = 255;
		}
		if (color.green()< 100)
		{
			g = 0;
		}
		else
		{
			g = 255;
		}
		if (color.blue() < 100)
		{
			b = 0;
		}
		else
		{
			b = 255;
		}
		newImage->setPixel(x, y, qRgb(r, g, b));
	}
}
while (!finish)
{
	finish = 1;
	for (int y = 2; y< image->height() - 2; y++)
	{
		for (int x = 2; x< image->width() - 2; x++)
		{
			color = QColor(newImage->pixel(x, y));
			if (color.red() == 0)
			{
				continue;
			}
			int  t1 = 0;
			int  t2 = 0;

			for (int j = 0; j < 5; j++)
			{
				for (int i = 0; i < 5; i++)
				{
					color = QColor(newImage->pixel(x + i - 2, y + j - 2));
					if (color.red() == 255)
					{
						nb[j][i] = 1;
					}
					else
					{
						nb[j][i] = 0;
					}
				}
			}
			/*条件1*/
			count = nb[1][1] + nb[1][2] + nb[1][3] + nb[2][1] + nb[2][3] + nb[3][1] + nb[3][2] + nb[3][3];
			if (count >= 2 && count <= 6)
			{
				t1 = 1;
			}
			else
			{
				continue;
			}
			/*条件2*/
			count = 0;
			if (nb[1][2] == 0 && nb[1][1] == 1)
				count++;
			if (nb[1][1] == 0 && nb[2][1] == 1)
				count++;
			if (nb[2][1] == 0 && nb[3][1] == 1)
				count++;
			if (nb[3][1] == 0 && nb[3][2] == 1)
				count++;
			if (nb[3][2] == 0 && nb[3][3] == 1)

收集整理了一份《2024年最新物联网嵌入式全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升的朋友。
img
img

如果你需要这些资料,可以戳这里获取

需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人

都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

1715801636576)]

如果你需要这些资料,可以戳这里获取

需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人

都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值