自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 Stable Diffusion 3.5 FP8文生图技术深度解析与应用探索

在AI模型中,参数和计算通常以FP32(32位单精度浮点数)或FP16(16位半精度浮点数)存储和运行。FP8则是8位浮点数格式,通过减少数据的位宽来降低存储占用和计算开销。传统量化技术(如INT8)虽能降低开销,但会导致精度大幅损失,尤其对于文生图这类对细节要求极高的模型,容易出现画面模糊、色彩失真等问题。

2025-12-27 21:09:38 784

原创 深度学习入门:从 LSTM 到 GAN 的实战项目推荐

从LSTM到GAN,我们完成了从**“预测”到“创造”**的深度学习实战之旅。这10个项目覆盖了时序数据、文本、图像三大核心领域,足够支撑你完成课程设计、毕业设计,甚至写进简历获得面试机会。后续学习路线深入学习进阶模型:GRU(门控循环单元)、DCGAN(深度卷积GAN)、CycleGAN;学习模型部署:将训练好的模型部署为API,使用Flask或FastAPI构建Web服务;探索工业级应用:参与Kaggle竞赛,积累真实场景的项目经验。

2025-12-26 21:28:27 678 1

原创 【创新方案】超越单一网络:当CNN-LSTM遇上高阶统计与二叉树,调制识别SOTA?| MATLAB实现深度解析

针对非合作通信复杂场景下信号调制识别面临的低信噪比鲁棒性差、新型调制格式区分难度大等痛点,本文提出一种融合与的调制识别框架。该框架通过高阶累积量与瞬时特征构造强判别性输入,借助ResNet改进的CNN模块挖掘空间特征,利用LSTM捕获时序依赖,并通过二叉树决策层实现从粗到精的分类。实验结果表明,该方法在公开数据集上相较于纯CNN、LSTM及传统SVM方法,在低信噪比区间识别准确率提升10%~15%,同时具备更高的分类效率与可解释性。

2025-12-25 22:34:34 1183 1

原创 【MATLAB实战】融合CNN-LSTM与高阶特征的信号调制识别:一种深度学习分类新思路

总结一下,本次分享的融合CNN-LSTM与高阶特征的信号调制识别方案,有三个核心优势:一是用高阶特征作为输入,提升了低信噪比环境下的识别稳定性;二是CNN+LSTM的组合,同时捕捉了信号的空间特征和时序特征,特征提取更全面;三是二叉树分类结构,降低了多分类难度,提升了识别效率和准确率。而且全程用MATLAB实现,代码简洁易懂,容易复用。当然,这个方案还有不少可以改进的方向,比如:1)引入注意力机制(比如SE注意力模块),让模型自动聚焦到关键特征上,进一步提升准确率;

2025-12-25 21:46:26 604

原创 ransformer一统江湖:视觉、语言与多模态的融合革命

五年前,机器学习领域还是“群雄割据”的局面:NLP领域被BERT系列模型统治,计算机视觉(CV)则是CNN的天下,跨模态任务更是需要专门设计的融合模块“牵线搭桥”。而如今,Transformer架构凭借其强大的注意力机制,正逐步打破模态壁垒,实现了视觉、语言乃至多模态领域的统一。从能读懂图文的Qwen2.5-VL,到能生成同步动作与视频的EgoTwin,再到解析生物分子交互的ProDMM,Transformer正在重塑整个机器学习的技术版图。

2025-12-24 15:09:52 703 1

原创 Linux深度解析:AI融合、CVE应对与高效工作流构建

2025年的Linux生态呈现“技术融合、安全优先、效率至上”的三大特征:AI与Linux的融合从概念走向落地,llm-d等项目降低了企业AI部署的门槛;CVE治理从“全量修复”转向“精准防护”,自动化工具与无重启补丁成为标配;个性化工作流则通过Dot Files实现了“低成本、高复用”的定制化。对于开发者与运维人员而言,把握这些趋势的核心是“落地优先”——无论是AI推理平台的部署,还是CVE防护体系的搭建,都应基于实际业务需求选择工具,避免盲目追新。

2025-12-24 09:00:00 1119 1

原创 “LSTM”让机器拥有记忆力的“时间魔法师”——深度解析循环神经网络的核心突破

当AI需要理解一句话、预测一段趋势、或生成一段音乐时,它面临着一个根本挑战:如何记住过去的信息以理解现在?2017年Transformer横空出世前,有一种神经网络结构统治序列建模长达20年——它就是长短期记忆网络(LSTM)。今天,我们来重新认识这位“时间序列大师”的智慧与局限。

2025-12-23 18:38:44 814 1

原创 从7亿用户到行业洗牌“2025 AI应用落地的冰与火之歌”

2024年AI赛道从“模型竞技”转向“应用落地”,但真正的爆款应用仍未出现。我们盘点近期热榜发现三个被低估的趋势:用户规模突破临界点却陷入“使用黏性焦虑”,开源与闭源的竞争从技术参数转向商业生态,中小企业成为应用落地的核心力量。就在上月,QuestMobile发布的2025年三季度报告显示,我国AI应用移动端月活用户已突破7亿大关,这一数据背后,是AI从“概念狂欢”走向“实用考验”的真实写照。

2025-12-23 09:00:00 1141

原创 AC-AC整流器如何成为风电/光伏系统的“智能网关”?

当全球聚焦碳中和目标,风电、光伏等可再生能源装机量迎来爆发式增长,工业节能改造如火如荼推进,一个隐藏在电力系统核心的“能量枢纽”正发挥着不可替代的作用——AC-AC整流器。它就像电能转换的“智能网关”,一边连接着不稳定的新能源发电端或复杂的工业负载,一边对接平稳的电网,不仅实现交流电之间的频率、电压转换,更承担着提升能源效率、降低谐波污染的关键使命。今天,我们就深入探究这个电力电子领域的核心器件,从技术演进、核心原理到行业应用,读懂它如何支撑全球能源转型。

2025-12-22 20:42:32 601

原创 揭秘抖音/自动驾驶背后的视觉AI“卷积神经网络深度解析”

当你刷抖音时,APP能精准识别画面中的人脸并推送美颜特效;当自动驾驶汽车平稳规避行人时,车载系统能实时判断路况与障碍物;当医生借助AI辅助诊断肺癌时,系统能从海量CT影像中锁定病灶——这些看似神奇的功能,背后都藏着同一个“视觉引擎”:卷积神经网络(CNN)。作为计算机视觉的核心基石,CNN不仅重塑了我们与数字世界的交互方式,更成为推动AI革命的关键力量。今天,我们就彻底揭开它的神秘面纱,从基础原理到实战应用,读懂视觉AI的底层逻辑。

2025-12-22 09:00:00 1537 6

原创 一文读懂AC-DC整流变换器:从原理到实践的全面解析

AC-DC整流变换器作为电子设备的“能量心脏”,其设计、优化和维护直接影响设备的性能和可靠性。从基础原理到设计实践,从性能优化到故障排查,本文涵盖了AC-DC整流变换器的核心知识要点。无论是电子爱好者学习入门,还是工程师开展设计工作,掌握这些知识都能助力提升工作效率和设计质量。随着新能源、物联网等技术的发展,AC-DC整流变换器将朝着更高效率、更小体积、更智能的方向发展,持续为电子产业的进步提供支撑。✨ 坚持用清晰的图解+易懂的硬件架构 +硬件解析, 让每个知识点都简单明了!🚀个人主页。

2025-12-21 17:24:25 1164 3

原创 Linux服务器突然卡顿?top+netstat+df,3条命令找出真凶

很多新手沉迷于复杂的监控工具和自动化平台,却忽略了top、netstat、df这些基础命令的强大。但实际上,在服务器突发卡顿的场景中,这些命令往往是最高效的排查工具——它们不依赖任何额外组件,随系统自带,操作简单直接,能快速定位核心问题。运维的核心能力不是“会用多少工具”,而是“能快速解决问题”。把top、netstat、df这三条命令的用法练熟,理解它们背后的资源监控逻辑,再结合实战案例积累经验,你就能在面对Linux服务器卡顿问题时,从“手足无措”变成“从容应对”。

2025-12-17 22:14:41 931 4

原创 右半零点的解析

要理解右半零点,得先明确黎曼猜想的核心战场——复平面。黎曼ζ函数就像一台精密的数学仪器,当它的输出为0时,对应的输入点就是“零点”。这些零点分两类:一类是负偶数(比如-2、-4),性质简单,被称为“平凡零点”;另一类性质复杂,决定着素数的命运,就是“非平凡零点”。黎曼在1859年抛出一个大胆猜想:所有非平凡零点都整齐地排在复平面上“实部等于1/2”的临界线上。而“右半零点”,就是指那些“不守规矩”的非平凡零点——它们的实部大于1/2,跑到了临界线的右侧区域。

2025-12-12 20:51:09 1126 1

原创 DCDC右半零点的物理意义

其中隔离型拓扑(反激 / 正激)是通过变压器分离输入侧电感(原边)与输出侧电容(副边),能量传递经磁耦合缓冲,避免 “电感电流延迟→电容放电” 的冲突;而非隔离型拓扑(SEPIC/Cuk)则是采用 “电感 - 电容 - 电感” 的储能链,中间电容起到能量缓冲作用,让电感电流的调整不会直接导致输出电容反向放电。在无法替换拓扑的电路中,也可以采用 “多相交错并联” 可大幅抬高右半零点频率,使其影响可忽略:其方法是2 路或 4 路 Boost 变换器并联,开关管相位错开(如 2 相交错,相位差 180°)。

2025-12-12 20:48:39 435 1

原创 开关调节系统的基础知识以及时域性能指标和频域性能指标知识

在单位阶跃信号的作用下,0型系统的稳态误差1/[1 + T(0)],I型或高于I型的系统稳态误差为零。如果φm(wc) < 0,则系统不稳定。它是指系统在典型信号Vref(t) (例如,阶跃输人)作用下,当时间t趋于无穷大时,系统实际输出值与期望值之差。为了评价控制系统性能的优劣,一般可根据系统的单位阶跃响应曲线,采用某些数值型的特征参量描述系统的动态性能,这些特征参量就称为时域性能指标。延迟时间td是指从单位阶跃信号变化开始(1=0) 到输出响应从其初值第一次到达稳态值( h(∞))的一半所需时间。

2025-12-11 23:25:49 1004 2

原创 Buck、Boost、Buck-Boost 输入输出传递函数总结

Buck 转换器(降压型)核心特征:无右半平面零点(RHPZ),最小相位系统,动态稳定、易于控制。直流增益(静态特性):(物理意义:占空比小信号扰动 1 个单位,输出电压变化量等于输入电压Vin)关键参数:谐振频率:ESR 修正项(实际应用):若考虑电容 ESR(resr),引入左半平面零点(LHPZ),传递函数修正为:​(零点频率:Boost 转换器(升压型)核心特征:含右半平面零点(RHPZ),非最小相位系统,高频稳定性差,需复杂补偿。

2025-12-10 14:38:57 1561 2

原创 Buck、Boost、Buck-Boost 电路原理

1 选型逻辑:需降压选 Buck,需升压选 Boost,需宽范围升降压选 Buck-Boost;2 核心控制:三者均通过调节占空比(PWM)控制输出电压,高频开关可减小电感、电容体积;3 实际考量:需考虑效率、纹波、元件电压 / 电流应力,通常 Buck 电路因结构简单、效率高,应用最广泛;4 拓展拓扑:实际应用中多采用 “同步整流”(用 MOSFET 替代二极管)进一步提升效率,或组合拓扑(如 LLC 谐振变换器)优化高压 / 大电流场景性能。

2025-12-09 22:30:34 1242 3

原创 开关电源拓扑的Gvg与Gvd传递函数

为了研究含有交流小信号分量的直流直流变换器动态特性,目前已提出了多种直流一直流变换器的交流小信号分析方法,这些方法可以为变换器建立解析模型或等效电路模型,并分析变换器的低频动态特性等。常见拓扑包括Buck(降压)、Boost(升压)和Buck-Boost(升降压),其核心差异在于电感、开关和二极管的连接方式。状态2(开关S1导通,开关S2关断):电感电压 v_L = v_g - V (1-3),电容电流 i_C = i - V/R (1-4);当进入稳态时对应两式(1-11)、(1-12)等于0有。

2025-12-08 21:29:01 620 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除