最长重复子数组&&最长公共子序列&&不相交的线

}

};

这道题是所求的子序列是连续的,下面来一道相似的题目不连续的;

最长公共子序列


给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

输入:text1 = “abcde”, text2 = “ace”

输出:3

解释:最长公共子序列是 “ace”,它的长度为 3。

示例 2:

输入:text1 = “abc”, text2 = “abc”

输出:3

解释:最长公共子序列是 “abc”,它的长度为 3。

示例 3:

输入:text1 = “abc”, text2 = “def”

输出:0

解释:两个字符串没有公共子序列,返回 0。

提示:

1 <= text1.length <= 1000

1 <= text2.length <= 1000

输入的字符串只含有小写英文字符。

这道题就是求的不连续的公共子序列,和上一道题非常像,分析内容也基本相同,这里就着重分析不同的地方:转移方程;

1, dp[i][j]是长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列;(加深印象)

2,这里就分为了两种情况:

text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列(dp[i - 1][j]) 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列(dp[i][j - 1]),取最大的。

则有dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

其它的就一样了,代码如下:

class Solution {

public:

int longestCommonSubsequence(string text1, string text2) {

int len1 = text1.size(), len2 = text2.size();

vector<vector> dp(len1 + 1, vector (len2 + 1, 0));

for (int i = 1; i <= len1; ++i) {

for (int j = 1; j <= len2; ++j) {

if (text1[i - 1] == text2[j - 1])

dp[i][j] = dp[i - 1][j - 1] + 1;

else

dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

}

}

return dp[len1][len2];

}

};

下面的这一道也是求不连续的子序列,但是不容易看出来,其实本质上和最长公共子序列这一道题一模一样;

不相交的线


在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:

nums1[i] == nums2[j]

且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数

示例 1:

在这里插入图片描述

输入:nums1 = [1,4,2], nums2 = [1,2,4]

输出:2

解释:可以画出两条不交叉的线,如上图所示。

但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。

示例 2:

输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]

输出:3

示例 3:

输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]

输出:2

提示:

1 <= nums1.length <= 500

1 <= nums2.length <= 500

1 <= nums1[i], nums2[i] <= 2000

直线不能相交,那么只要在字符串A中找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,那么连接相同数字的直线就不会相交。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值