因为当第一行确定的时候,那么接下来的行就是按照同号为’+’ ,异号为’-’,来填写
2.在这里我们选择的解的空间是子集树(因为我们树每次要么是’-’,要么就是’+’)
3.具体步骤
1>:递归函数的参数
backtacking()
2>:输出的 结果
vector ans;用来存每次的可行解
vector path; 用来记录一次的可行解
3>:横向单层for循环 和 纵向的递归
横向的单层for循环为 0 和 1(这里我们用0和1代表’+‘和’-’)
纵向的递归为我们的n层结构
4>:递归终止条件为path.size() == n
4.当我们求出所有的可行解,我们要对其做出处理,因为我们只是穷举了第一行的所有数据
所以我们的得补充完整个二维矩阵的样子,那么我们补充的原则是,2个同号下面都是“+”,2个异号下面都是“-”。
5.当得到一个完整的图形后我们要判断 0 和 1的个数时候相等 ,如果相等则计数,就是符合要求的
符号三角形
6:图示例
========================&#