自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(192)
  • 收藏
  • 关注

原创 大模型时代,程序员如何抓住AI风口?一篇读懂应用开发(建议收藏)

本文面向非AI背景开发者,详细介绍了大模型应用开发的基本原理和实践方法。文章阐述了Prompt Engineering、Function Calling、RAG检索增强生成等核心技术,分析了知识问答和代码助手两大典型应用场景的实现逻辑和优化方向。同时,文章指出普通程序员可通过开发MCP-Server工具参与AI生态建设,让大模型与真实世界交互,帮助开发者抓住AI时代的机遇,无需深厚AI背景即可参与大模型应用开发。

2025-09-21 09:45:00 650

原创 AI智能体架构设计完全指南:从LLM Agent到Muti Agent,收藏这篇就够了!

文章详细介绍了AI智能体的三阶段架构设计演进:从LLM Agent到AI Agent再到Muti Agent,以及三大关键技术Function Calling、MCP和A2A的对比分析。阐述了AI智能体如何从简单的聊天机器人发展为具备规划、记忆和工具使用能力的复杂系统,再到多智能体协作网络,剖析了不同技术的特点、适用场景和优缺点,为开发者提供了构建AI智能体的技术路线参考。

2025-09-21 09:00:00 564

原创 收藏!GenAI应用工程师崛起指南:从AI构建模块到辅助编程,全方位解析高薪新职业

GenAI应用工程师是AI时代的新兴高薪职业,需掌握两大核心能力:一是驾驭丰富的AI构建模块(提示工程、RAG、向量数据库等),二是精通AI辅助编程工具。具备产品设计能力者更具竞争力。AI技术日新月异,持续学习是保持领先的关键。该职业在金融、企业服务、制造等领域需求激增,为技术人提供了职业转型和发展的新机遇。

2025-09-20 09:30:00 396

原创 【必看收藏】AI大模型架构选择:单智能体vs多智能体,2025年开发者必知的技术路线

本文探讨了AI大模型应用落地中单智能体与多智能体架构的选择争议。Anthropic认为多智能体架构性能提升90.2%,能突破单智能体限制;Devin则指出多智能体存在成本高(15倍)、上下文丢失、决策冲突等问题。作者认为现阶段单智能体架构更可靠,但多智能体是未来方向。建议根据具体应用场景选择合适架构,并可通过向量数据库解决多智能体的记忆问题。最后强调AI大模型学习的重要性,提供了相关学习资源。

2025-09-20 07:45:00 924

原创 【收藏必备】Qwen3-Embedding完全指南:从零部署到实战应用的全方位解析

Qwen3-Embedding是阿里巴巴通义实验室推出的新一代文本嵌入模型,具有强大的语义理解能力和多语言支持。本文详细介绍了该模型的核心原理、优势及应用场景,并提供了在阿里云PAI平台部署、微调及模型推理的完整指南,同时对比了LLM与轻量Embedding模型的性能差异和成本效益。文章还分享了工程链路优化技巧,帮助开发者高效构建基于语义理解的智能应用,如搜索、推荐和内容分析等。

2025-09-20 07:30:00 726

原创 收藏!LLM、RAG、Agent三大AI架构详解:小白必学的区别与选择指南

本文详细解析了人工智能领域三大主流架构:大语言模型(LLM)、检索增强生成(RAG)和AI智能体(Agent)。LLM是静态知识基础的文本生成系统;RAG结合LLM与外部知识检索,提供实时准确信息;Agent则是目标导向的自主智能系统,可多步骤规划并调用工具。文章从知识来源、任务复杂度、自主性等维度进行对比,并提供了不同场景下的选择指南和实施要点,帮助读者根据需求选择合适的AI解决方案。

2025-09-19 14:24:55 858

原创 Java + Spring AI智能体开发实战|从小白到专家|零代码构建全能AI助手

Len AI Agent是基于Java 21 + Spring Boot + Spring AI + LangChain4j构建的开源智能体框架,提供多种大模型调用方式、知识库问答(RAG)和智能工具调用能力。项目采用ReAct框架实现智能体规划,支持任务拆解与自动执行,具备高度可扩展性。该框架适合企业级AI应用开发,帮助开发者快速构建具备自然语言理解、工具调用、知识检索与智能规划能力的全能AI助手,是学习AI应用开发的绝佳实践平台。

2025-09-19 13:47:26 789

原创 【收藏必看】RAG系统成败关键:90%开发者都忽略的Embedding选型指南

文章强调在RAG系统中,Embedding模型选型是决定系统性能的关键因素,而非仅仅是技术细节。检索准确性直接决定最终答案质量,遵循"垃圾进,垃圾出"原理。选型需考虑准确性需求、资源约束和应用场景,遵循"因地制宜"原则,以解决实际问题为首要目标。技术服务业务,选型应优先考虑实用性而非技术先进性。

2025-09-19 12:02:03 638

原创 程序员必学!从零实现RAG系统,打造专属AI知识库(含完整代码)

本文详细介绍了如何从零实现RAG(检索增强生成)系统,为AI模型外挂专属知识库。教程涵盖文档解析、文本分块、向量数据库搭建、语义检索、LLM接入、对话记忆和指代消解等关键步骤,并提供了完整代码实现。相比现成框架,自实现能更好理解系统原理,便于精确调优和解决特定业务需求,同时提高问题定位能力和系统透明度。

2025-09-19 11:40:50 999

原创 【超详细】大模型开发指南:从入门到精通的必备技术手册

文章系统解析大模型(LLM)的底层技术架构、训练范式和工程化开发挑战,探讨如何将大模型能力封装为可集成系统组件,并分析未来发展趋势。对开发者而言,理解底层机制、掌握工程构建方式比单纯学习框架更具长期价值。

2025-09-19 11:28:22 858

原创 大模型修炼手册:预训练+微调+对齐,一篇搞定,建议收藏

本文将大模型训练比作培养"通才学生",分为三步:预训练让模型掌握语言与常识;微调教会模型按特定方式做事;对齐确保模型遵循人类偏好与安全边界。文章提供了三层漏斗交付模型、不同预算落地方案、数据准备清单和评测方法,并指出常见误区。建议先尝试提示词与RAG,再进行LoRA微调,最后进行对齐与安全测试。

2025-09-18 15:02:19 811

原创 【收藏必备】AI Agent从入门到精通:大模型智能代理技术全解析

文章通过问答形式详细解析了AI Agent的技术概念、构成组件、工作原理及发展趋势。对比了AI Agent与传统软件的区别,介绍了Chatbot向AI Agent演进的技术驱动因素。探讨了AI Agent的模型、环境反馈和工具三大核心要素,以及如何通过优化模型、工具和指令提升输出效果。分析了Workflow与LLM在构建Agent系统中的不同应用场景,并讨论了单智能体与多智能体系统的优势与应用前景。

2025-09-18 14:57:19 1067

原创 【珍藏干货】Embedding微调:让你的搜索、推荐、问答系统脱胎换骨

文章介绍了Embedding微调的重要性和方法,指出通用Embedding在特定领域表现不佳的问题,详细讲解了无监督微调和监督微调两种方法,提供了从选择预训练模型、准备数据到动态难负样本挖掘的完整代码实战,并展示了在智能客服、文档检索、推荐系统等业务场景中的应用价值。通过微调,Embedding能显著提升NLP任务的准确性和智能化水平。

2025-09-18 14:51:23 941

原创 收藏必学!大语言模型(LLM)入门扫盲:基础模型与指令微调模型详解

本文详解了大语言模型(LLM)的两种核心类型:基础LLM和指令微调LLM。基础LLM以"预测下一个单词"为目标,擅长文本续写但可能答非所问;指令微调LLM在基础模型上通过"指令-回复"配对数据和RLHF技术优化,能准确理解用户意图并生成符合要求的输出,成为实际应用的主流选择。

2025-09-18 14:45:39 619

原创 收藏必学!LoRA/AdaLoRA/QLoRA:三大参数高效微调技术,让大模型训练成本降低万倍!

本文详解三种参数高效微调大模型方法:LoRA通过低秩矩阵分解减少可训练参数;AdaLoRA动态调整矩阵秩提升性能;QLoRA引入4位量化实现极致内存优化。这些方法显著降低计算资源需求,使个人开发者也能高效微调大模型,保持与全量微调相当性能,是解决大模型应用落地瓶颈的关键技术。

2025-09-18 14:40:22 792

原创 【收藏必备】大模型RAG技术进阶:从向量检索到知识图谱的全面解析

本文详细介绍了传统RAG技术与GraphRAG技术的对比与融合。传统RAG通过语义相似度进行检索,但无法捕获数据点间的依赖关系;GraphRAG利用知识图谱构建实体关系,通过两阶段流程提取实体、关系并生成摘要,支持多种检索策略。GraphRAG在处理关联密切数据时表现更佳,但存在需重新索引等局限性。结合两种方法构建混合系统,可兼顾语义相似度与结构洞察,为用户提供更准确、有深度的回答。

2025-09-17 14:36:31 797

原创 【值得收藏】RAG技术入门到精通:7个核心概念详解,助力AI产品经理进阶

文章详细介绍了RAG(检索增强生成)技术的7个核心概念:向量数据库、混合检索、分块嵌入与索引、重排序、上下文融合、准确率与召回率、知识图谱。RAG技术通过从指定知识库检索准确内容再生成回答,有效避免大模型幻觉。文章还阐述了RAG系统的运行步骤,强调了这些技术在提升大模型应用准确性和实用性方面的重要价值,特别适合AI产品经理和开发者学习掌握。

2025-09-17 14:31:15 786

原创 【必读收藏】RAG技术全解析:让大模型告别“胡说八道“,构建企业级AI知识库终极指南

本文全面解析RAG(检索增强生成)技术,详细阐述其如何解决大模型知识时效性、幻觉问题及领域专业性不足的痛点。从基础概念到工作原理,从技术栈到优化方法,系统介绍了RAG在企业级AI应用中的价值、实现路径和最佳实践,帮助开发者构建高效、准确、可解释的企业级AI知识库。

2025-09-17 13:47:50 1067

原创 【必学收藏】从零到企业级:RAG系统构建全指南,小白也能轻松掌握

本文详细解析了企业级RAG系统的三大核心环节:文档预处理需将多格式文档统一转换为Markdown并进行清洗总结;文档召回需优化用户查询、提取标签进行标量检索,并对结果去重排序;生成增强需整合召回内容,处理上下文限制,优化用户体验。作者通过实际项目经验,强调了每个环节的技术难点与解决方案,为构建高质量RAG系统提供了实用指导。

2025-09-17 11:55:22 453

原创 收藏学习!小白也能懂:用Python基础库从零手撕RAG内核,掌握大模型检索增强生成

本文详细介绍了如何使用Python基础库(如numpy)从头构建RAG系统。从基础实现开始,逐步介绍文本分块、向量化、相似度检索等核心组件,并探讨9种高级RAG技术,包括语义分块、上下文增强检索、问题增强生成、查询改写、结果重排序、相关段落提取、上下文压缩和反馈机制。通过详细代码示例,帮助读者深入理解RAG系统底层原理,提升大模型应用能力。

2025-09-17 11:39:51 694

原创 大模型Prompt没那么简单!从入门到精通的提示词工程指南,值得收藏

本文探讨了大模型Prompt的演变与价值,指出Prompt从简单的指令发展为需要精心设计的复杂系统。详细介绍了Prompt设计要素包括角色定义、任务描述、上下文管理等,强调Prompt需要持续优化和"训练"。当Prompt达到极限时,可考虑模型微调。在复杂应用场景中,Prompt可能涉及ReAct、Agent等机制,需要系统化设计。掌握Prompt工程对有效利用大模型至关重要。

2025-09-16 14:15:23 851

原创 【珍藏版】AI Agent开发必看:破解知识库、工作流与Prompt工程三大痛点

本文详细解析了AI Agent开发的三大核心痛点:知识库构建、工作流设计和Prompt工程。知识库部分介绍了从收集、整理、存储到检索的全流程,推荐使用向量数据库与图数据库的混合架构;工作流部分阐述了Agent的任务执行路径和循环-反思-再行动机制;Prompt工程部分则聚焦于系统提示词设计、示例引导和输出格式规范。掌握这三方面技术,可有效提升AI Agent的专业性、效率和准确性,是开发高质量AI Agent的关键所在。

2025-09-16 14:10:20 926

原创 【建议收藏】深入理解RAG:从文档解析到LLM接入的完整实现指南

文章介绍了如何从零实现RAG系统,包括文档解析、文本分块、向量数据库搭建、语义检索、LLM接入、对话记忆和指代消解等关键步骤。相比使用现成框架,自实现RAG系统提供了完全的控制权,能精确调优各环节,快速定位问题,透明控制成本,并深入理解RAG工作原理,特别适合有特定需求的业务场景。这种理解在遇到复杂场景时价值巨大,长期来看非常值得。

2025-09-16 14:01:04 1043

原创 RAG技术构建智能问答平台:完整流程与实战指南(建议收藏)

RAG技术通过检索增强生成构建智能问答系统,分为数据准备和应用两大阶段。数据准备包括数据收集清洗、文本解析分割、向量化转换和数据入库;应用阶段涵盖用户提问、问题解析、多步检索(召回与重排)、Prompt注入及LLM生成答案。该技术能有效减少幻觉,支持知识动态更新,是企业和个人打造知识库的重要架构。

2025-09-16 13:48:34 635

原创 必看收藏 | Agent五大模块深度解析:小白也能看懂的AI智能体架构指南

文章将AI Agent比作"五件套"机器,详细解析五大核心模块:感知(信息收集)、大脑/决策(LLM分析与规划)、规划与执行(工具调用)、记忆(短期与长期存储)以及学习与适应(持续进化)。通过自动咖啡机和订健康餐实例,展示各模块如何协同工作,使Agent从通用工具转变为个性化助手。强调工具使用能力是Agent区别于传统聊天机器人的关键,而记忆与学习机制则使其能持续进化。

2025-09-16 11:38:15 593

原创 强烈推荐:智能体强化学习:解锁大语言模型自主决策能力的终极指南(含500+研究总结)

本文系统综述了智能体强化学习(Agentic RL)如何将大语言模型从"文本生成器"转变为"自主决策智能体"。通过五大维度对比和六大核心能力分析,详细阐述了Agentic RL在搜索、代码、数学推理等领域的应用。文章提供了完整的技术框架,指出可信度、规模化、环境复杂度三大挑战,并展望了LLM智能体作为"主动解决问题伙伴"的未来发展,是通向通用人工智能的关键一步。

2025-09-15 14:07:43 949

原创 多智能体系统(Multi-Agent)实战指南:从单Agent到团队协作,提升AI效率10倍,值得收藏学习!

本文深入解析了多智能体系统(Multi-Agent)的概念与优势,详细介绍了从单Agent到多Agent的演进过程,对比了两者在复杂任务处理上的效率差异(提升90%)。文章拆解了MetaGPT、ChatDev等主流框架,并通过智能海报项目展示了多Agent系统的实际应用。同时指出多Agent系统面临的挑战,如角色混乱、沟通障碍等,强调现阶段仍需加强管理和控制。多Agent系统代表了AI协作的新范式,通过分工与协作实现1+1>2的效果。

2025-09-15 14:05:37 750

原创 【值得收藏】从零开始学AI Agent:字节扣子平台功能详解,大模型应用开发必备指南

文章总结了字节跳动扣子平台(AI Agent平台)的核心功能与机制,认为AI Agent是技术过渡期的产物。平台包含智能体、提示词、技能、插件、工作流、触发器、知识库、记忆系统等组件,支持单/多Agent模式及对话流模式。开发者可通过这些组件构建具备对话、数据处理、自动化执行等能力的AI应用,资源可在项目空间内共享复用,为复杂任务提供灵活解决方案。

2025-09-15 13:57:31 1318

原创 【干货收藏】一文搞懂大模型优化技术:蒸馏、RAG与微调实战指南

文章介绍了大模型三大优化技术:蒸馏(适合资源受限场景)、RAG(适合需要外部信息增强的场景)和微调(适合领域专用场景)。详细分析了各自优缺点、适用条件和典型案例。重点介绍了LoRA和QLoRA微调技术,通过低秩矩阵减少参数更新量,降低计算开销同时保持性能,为不同应用场景提供技术选型参考。

2025-09-15 13:46:41 711

原创 【必藏】AI Agent核心知识全解析:十大概念助你快速入门大模型开发

本文系统介绍了AI Agent的十大核心概念,涵盖基础概念(大模型、AI Agent、Token、嵌入模型、大模型幻觉)和架构策略(提示工程、Transformer、MOE、RAG、微调)。通过通俗易懂的语言和内部文章链接,帮助开发者、创业者和技术爱好者快速掌握智能体相关知识,是一份不可错过的认知升级指南。

2025-09-15 13:38:41 589

原创 【珍藏版】大模型记忆机制深度解析:构建智能AI的核心基础设施

本文系统介绍了大模型记忆体的概念与最新进展,阐述了记忆对LLM实现长期交互、个性化服务的重要性。文章从记忆来源、形式和操作三方面解析记忆模块设计,并详细介绍了Reflexion、MemoryBank等代表性记忆机制及M3-Agent等多模态框架。记忆被视为下一代AI基础设施,是构建真正智能AI代理的关键,让AI能够像人类一样积累经验、持续学习。

2025-09-15 11:51:16 950

原创 程序员收藏!大模型技术学习路线图:从小白到大厂AI人才的蜕变之路

互联网大校招已演变为AI人才"军备竞赛",AI岗位占比大幅提升(百度超90%,阿里超60%)。企业更关注AI落地能力和工具使用,弱化学历标准,看重实习经历。AI能力已成为进入大厂的"新门票",非技术岗也开始要求掌握AI工具。顶尖应届博士年薪近200万元,2030年中国AI人才需求将增至2022年的6倍,掌握大模型技术成为职场核心竞争力。

2025-09-14 10:00:00 870

原创 大模型多Agent协作技术详解:从入门到精通,开发者必收藏学习指南

本文系统分析了大模型多Agent协作技术的发展历程,从早期探索到框架成熟再到应用深化,详细对比了AutoGen、LangGraph和Crew AI等主流框架的技术特点。文章深入探讨了技术、应用及伦理层面的挑战与解决方案,并展望了多模态协作、自适应机制和垂直领域应用等未来趋势。为开发者提供了全面的技术指导和实践参考。

2025-09-14 09:30:00 628

原创 【收藏必学】智能体工作流设计模式:让AI从“能对话“进化为“会决策“

文章介绍了智能体从单一工具向复杂任务处理系统进化的趋势,并详细解析了六大工作流设计模式:链式、路由式、评估优化式、并行式、规划式和协作式。这些模式分别解决顺序执行、分类处理、质量优化、效率提升、灵活规划和分工协作等不同场景需求。掌握这些设计模式能帮助构建鲁棒、高效的智能系统,使AI从"能用"走向"好用",是AI应用落地的关键架构知识。

2025-09-14 09:15:00 914

原创 【值得收藏】一文读懂多模态RAG:扩展AI能力的革命性技术

多模态RAG扩展了传统文本RAG能力,能处理图像、音频、视频等多类型数据。其核心是将不同模态数据映射到统一向量空间,实现跨模态检索和生成。完整流程包括数据预处理、查询处理和生成响应三个阶段。主要技术组件有多模态编码器、检索系统和生成模型。多模态RAG面临模态对齐、跨模态理解等挑战,未来将向更高效表示、更强理解能力方向发展,为AI系统提供更丰富准确的回答。

2025-09-13 11:43:58 1056

原创 收藏必备!RAPTOR:大模型RAG系统的智能索引优化技术全解析

RAPTOR通过构建层级化索引树优化RAG系统性能。它将文档分割为叶节点,经主题聚类和LLM摘要生成递归构建抽象层次更高的节点,最终形成"折叠树"向量存储。这种多分辨率索引使系统能根据问题复杂度选择合适信息粒度,在保持查询简单性的同时显著提升RAG性能,尤其在处理需综合多源信息的复杂问题时表现优异。

2025-09-13 11:33:53 770

原创 抓住AI Agent风口:程序员弯道超车的必备技能,建议收藏

文章介绍AI Agent作为AI升级版的重要性,它使用门槛低,能自主拆解任务并调用工具完成。由大模型、规划、记忆和工具组成,具备感知环境、分析决策和执行能力。尽管面临数据获取、多工具协同等挑战,但其发展潜力巨大,将重构多个行业和岗位。建议积极学习使用AI Agent,把握未来弯道超车机会。

2025-09-13 11:28:42 969

原创 大模型微调全攻略:从零开始手把手教你用LoRA微调Qwen2.5(建议收藏)

本文详细介绍了大模型微调的实战全过程,重点讲解Qwen2.5模型的LoRA微调技术。从环境配置、数据准备、模型选择到训练、保存和推理,对比分析了LoRA、QLoRA等微调方法的优缺点,并提供常见问题解决方案。通过具体代码示例,帮助初学者掌握大模型微调的核心技能,实现特定任务的高效适配。

2025-09-12 13:45:34 821

原创 【干货收藏】从零构建大模型Agent应用:完整开发指南与实战

本文详细介绍了如何构建大模型Agent应用,核心公式为Agent Application=Application+Agent+MCP。文章从基础应用搭建、Agent集成设计和开发流程三方面展开,详细阐述了Task Splitter和Task Executor的设计与实现。通过XML格式定义任务和工具调用,结合人机交互流程,实现高效可靠的Agent应用开发,适合大模型开发者参考学习。

2025-09-12 13:36:10 870

原创 大模型应用开发必备知识:RAG(检索增强生成)从入门到精通!

检索增强生成(RAG)技术通过结合LLM与外部知识库,解决了模型知识更新的难题。它通过检索相关文档、构建增强提示、生成响应的流程,使模型能够访问最新知识,提高回答准确性,同时避免重新训练的高昂成本。RAG提供源跟踪功能,降低幻觉风险,为LLM开辟了持续学习的新途径,是当前增强大模型能力的关键技术之一。

2025-09-12 11:53:29 677

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除