- 博客(600)
- 收藏
- 关注
原创 【收藏】大模型转行完全指南:适合人群、新手友好方向与避坑策略
文章详细介绍了大模型入门的四大方向(数据、平台、应用、部署)及适合人群,新人常见误区,以及从认知期到项目打磨的三阶段学习路线。强调大模型不仅需要算法调优,更需要工程落地能力,建议新手根据自身背景选择适合的切入点,通过实战项目积累经验,实现从零到就业的转型。
2026-01-10 15:10:42
498
原创 收藏必备!小白也能懂的AI大模型核心术语:AGI、RAG、AIGC详解
文章以通俗易懂的方式解析AI大模型三大核心术语:AGI(通用人工智能)具备人类水平的认知能力,RAG(检索增强生成)通过外部知识库提升模型准确性,AIGC(人工智能生成内容)利用AI自动创作多样化内容。这些技术正广泛应用于医疗、金融、政务等领域,学习大模型技术是抓住AI时代风口的重要途径,适合小白及程序员入门学习。---
2026-01-10 15:07:44
192
原创 【干货收藏】大模型Agent实战:10个高频问题解决方案与代码实现
文章详解大模型Agent设计的10个高频挑战性问题,从RAG评估到多模态应用,每个问题均提供解决方案和示例代码。涵盖减少幻觉、GPU高效微调、多语言检索系统、法律领域评估、欺诈检测调试、智能客服延迟优化等核心技术点。强调Agent设计是技术选型、架构思维与业务场景的深度融合,帮助开发者在复杂大模型生态中游刃有余。
2026-01-10 14:13:18
349
原创 收藏必备:深入理解RAG的4个层级与面试技巧,助你成为大模型开发高手!
文章系统分析了RAG技能的四个层级(概念理解、技术应用、系统优化、架构设计),详细阐述了每个层级的能力要求和标准。同时介绍了面试官如何通过基础理论、实践经验和系统设计三个维度判断应聘者的RAG理解深度。最后提供了丰富的学习资源,帮助开发者从入门到精通,掌握RAG技术,应对大模型开发岗位的面试挑战。
2026-01-10 14:08:21
162
原创 【收藏必学】从业务痛点到场景落地:企业AI转型的三大准备与五大应用场景全解析
本文阐述了企业成功AI转型的三大关键准备:需求分析(业务流程拆解、数据评估和价值量化)、数据治理(解决数据孤岛问题)和工作流(AI嵌入现有业务流程)。同时详细介绍了五大典型应用场景:智能知识库、智能质检、智能营销、AIoT和智能数据决策。文章还提供了普通人学习大模型技术的路径和资源,帮助读者抓住AI时代机遇,掌握核心技能。
2026-01-10 14:06:11
493
原创 2026年转型大厂算法工程师:大模型技术学习全攻略(必收藏)
本文详细介绍了成为互联网大厂算法工程师的条件,包括优秀教育背景、相关项目经验、扎实的算法模型和代码能力,以及论文、比赛和开源项目的加分项。特别强调了当前AI大模型技术的发展趋势和就业前景,并提供了从零到精通的大模型学习资料,包括理论讲解、实战项目、学习路线图、视频教程、行业报告和面试指南等,帮助不同背景的学习者掌握AI大模型技术,抓住行业风口。
2026-01-09 11:38:57
599
原创 RAG系统性能提升指南:检索前中后全流程优化技巧,解决大模型应用痛点,值得收藏
本文详解RAG系统高级优化策略,围绕检索前、中、后三阶段展开。涵盖智能分块、查询扩展、混合搜索、重排序、上下文压缩等技术,以及QA对优化和Prompt工程方法。探讨RAG幻觉问题成因与防范策略,通过全流程优化提升召回率和相关性,帮助构建更智能、可靠的RAG应用。
2026-01-09 11:35:17
460
原创 【必学收藏】大模型100个关键术语详解,助小白/程序员快速入门AI大模型世界
这篇文章系统整理了大模型领域近100个核心名词解释,涵盖模型架构、训练方法、优化技术、应用场景等十大类别,为学习者提供全面知识框架。同时分享了从入门到进阶的学习路线图,包括视频教程、PDF书籍、行业报告、面试题等实用资源,帮助初学者快速掌握AI大模型技术,抓住行业风口。
2026-01-09 11:31:37
387
原创 AI产品经理大模型完全指南:从小白到专家的收藏级学习手册
本文系统介绍AI产品经理角色定位、与传统产品经理的区别及2025年行业趋势,重点解析大语言模型(LLM)技术原理、主流产品对比与提示工程技巧,构建技术、产品、管理三维技能图谱,详述AI产品开发全流程方法论,为小白和程序员提供从入门到精通的AI产品能力培养路径与实用学习资源。
2026-01-09 11:25:11
333
原创 AI Agent开发框架终极对比分析:从技术特性到企业应用,小白也能轻松选型,建议收藏备用!
文章对LangGraph、AutoGen、Dify、Coze、MetaGPT、OpenAI Agents等主流AI Agent开发框架进行了多维度对比分析,包括核心定位、技术特性、典型场景、成本模型和社区支持等。根据不同应用场景和需求,提供了选型建议:复杂流程管理推荐LangGraph和Dify;多智能体协作推荐AutoGen和MetaGPT;快速原型开发推荐Dify、Coze和OpenAI Agents;企业级合规需求推荐Dify和OpenAI Agents;成本敏感型项目推荐开源框架。
2026-01-09 11:18:19
300
原创 大模型技术全攻略:从小白到实战,建议永久收藏
大模型是人工智能领域的突破性技术,通过预训练海量数据具备理解和生成语言、图像等能力。广泛应用于自然语言处理、内容推荐、医疗、教育、商业分析等多个场景,创造巨大价值。虽然大公司有优势,但小模型在特定领域也能取得良好效果。普通人可通过系统学习抓住AI风口,掌握大模型技术将为职业发展带来新机遇。
2026-01-09 11:15:34
524
原创 收藏必备!DeepSeek大模型的MoE架构详解:让大模型更高效的秘密武器
本文首先介绍了DeepSeek大模型采用的MoE(混合专家)架构原理,包括专家网络、门控网络和输出组合机制。MoE通过"分工合作"和"按需调用"实现大模型容量与高效计算的平衡,具有参数量大但计算量小、模型容量高、专业化等优势。随后文章提供了AI大模型学习资源,包括教学内容、学习路线图、视频书籍、行业报告和面试资料等,帮助开发者系统学习大模型技术。
2026-01-08 11:43:09
531
原创 程序员必看!大模型15大安全威胁防护+全套学习资料,收藏这一篇就够了
本文详细解析了AI大模型面临的15种安全威胁及防护措施,涵盖记忆投毒、工具滥用等风险。同时介绍大模型在金融、法律等多领域应用场景及高薪岗位需求,并提供系统化学习资源,包括理论到实战的5大模块课程、项目案例、学习路线图、视频教程及面试题等,助力程序员从零入门AI大模型技术,抓住行业风口。
2026-01-08 11:35:11
860
原创 Google AI Agent安全框架详解:从风险防御到实践应用,程序员必收藏的大模型安全指南
Google提出的AI Agent安全框架包含两大风险(异常行为和敏感数据泄露)、三大原则(明确人类控制、受限权限、可观察行为)和双层防御策略(确定性防护与动态推理)。该框架通过"风险识别—原则约束—策略落地"的闭环思路,既强化安全边界又提升模型抗攻击能力,为AI Agent大规模应用奠定基础,同时提供了系统化学习路径帮助开发者掌握大模型技术。---
2026-01-08 11:29:40
581
原创 【深度收藏】AI不再神秘:从ChatGPT到Transformer架构的全景解析
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。
2026-01-08 11:24:23
683
原创 【收藏必看】LangChain+Neo4j图RAG实战:从零构建知识图谱到评估全流程
这次分享我们完整走了一遍图RAG管道的构建流程:从用PDF构建滑雪领域知识图谱,到优化提示词提升检索准确性,再到用QAEvalChain评估系统性能。希望通过这个案例,能让大家对图RAG真实构建过程有一定的了解,对大家有点帮助。只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。
2026-01-08 11:22:27
596
原创 LangChain框架入门:文本分割器全解析(小白到精通,建议收藏)
默认按照的优先级进行分割,可以通过separators指定自定义分隔符。# 2.定义递归文本分割器", "?当内置的的文本分割器无法满足业务需求时,可以继承类来实现自定义分割器,不过一般需要自定义文本分割器的情况非常少,# 1.按段落进行分割continue# 2.按句进行分割")[0])# 1.文档加载loader = TextLoader(file_path="李白.md")# 2.定义文本分割器# 3.文本分割print(
2026-01-08 11:19:42
831
原创 【必学收藏】HiChunk:分层分块如何彻底解决RAG检索增强生成的核心痛点
本文针对RAG系统中"分块质量难评估"与"分块-检索适配性差"的问题,提出HiCBench评估基准和HiChunk分层分块框架。HiCBench通过人工标注分层分块点与生成证据密集型QA对,实现对分块方法的细粒度评估;HiChunk通过微调LLM生成多级别分块点,结合Auto-Merge动态检索算法,平衡语义完整性与检索适配性。实验证明,该方法在分块准确性和RAG全流程性能上显著优于传统方法。
2026-01-07 13:40:16
936
原创 收藏级干货:提示词工程入门到精通——四步教你调教出精准AI助手
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。
2026-01-07 11:57:14
866
原创 【收藏必学】大模型时代重排序技术实战指南:从原理到代码,提升搜索相关性40%
重排序模型是专门设计用于优化搜索结果排序的机器学习系统,其核心功能是根据查询与文档之间的相关性程度对候选结果进行重新排列。在信息检索系统架构中,重排序模型扮演着质量控制层的角色,将粗粒度的候选文档集合转换为精确排序的高质量结果列表。从技术实现角度来看,重排序过程类似于多阶段筛选机制。在图书馆信息管理场景中,当用户查询"机器学习"相关书籍时,初始检索可能返回数百本包含相关术语的图书。重排序模型则如同领域专家,通过深度分析每本书籍的内容特征,综合考虑用户查询意图,最终将最具相关性的资源优先呈现给用户。
2026-01-07 11:55:20
1104
原创 Transformer架构详解:大模型开发必修课
本文详细解析了Transformer架构的核心原理,包括tokenization、词嵌入表示、位置编码以及编码器和解码器中的多头注意力机制。文章解释了如何通过自注意力机制和位置感知前馈神经网络处理序列数据,以及如何利用这些技术构建大模型。同时,强调了学习AI大模型技术的重要性,提供了系统化的学习路径和资源,帮助读者从零入门并掌握AI时代的核心技能。
2026-01-07 11:52:25
543
原创 【必收藏】Transformer完全解析:大模型学习的核心架构与实战实现
文章详细介绍了Transformer模型的结构与实现,包括编码器解码器设计、嵌入表示层、多头自注意力机制等核心组件。通过代码示例展示了如何实现这些组件,并介绍了训练过程。最后提供大模型学习资料,帮助读者从零入门掌握AI大模型技术。
2026-01-07 11:34:51
752
原创 一文掌握向量化与嵌入模型,打造高智商RAG系统!
文章解释了传统搜索只匹配关键词而不理解语义的局限性,介绍了向量化技术(将文本转换为数字向量)和嵌入模型(实现向量化的工具),展示了它们如何让AI真正理解语言含义。通过比较不同嵌入模型和介绍向量数据库如Chroma,文章详细阐述了向量化技术如何提升搜索体验,并提供了学习大模型的相关资源。
2026-01-07 11:29:08
770
原创 【必学收藏】检索增强生成(RAG)实战:让大模型利用外部知识提升回答准确性
文章介绍了检索增强生成(RAG)技术,这是一种结合检索模型和生成模型的方法,使大语言模型能够利用外部知识源生成更准确的回答,无需重新训练模型。文章详细解释了RAG的工作原理(检索、增强、生成三个阶段),并提供了一个使用LangChain、OpenAI GPT和Weaviate向量数据库实现RAG的完整代码示例。RAG有效解决了LLM在处理特定、最新和专有信息方面的不足,减少了"幻觉"现象。
2026-01-06 11:59:47
1029
原创 收藏!谷歌发布的601个全球领先企业生成式AI真实应用案例(11大行业全覆盖)
文章总结了谷歌发布的601个全球领先企业的生成式AI真实应用案例,按11大行业和6种AI智能体类型分类展示。这些案例揭示了各行各业如何借助生成式AI优化工作流程、提升效率、增强客户体验并推动创新落地,从汽车、金融到医疗、零售,AI技术正在重塑传统业务模式,为企业创造新价值,为AI技术落地提供实战参考。
2026-01-06 11:57:27
543
原创 2026年大模型时代,程序员如何抓住AI风口?一篇读懂大模型应用开发
本文为非AI背景开发者提供大模型应用开发入门指南,强调无需深厚AI和数学知识即可参与。文章介绍Prompt Engineering、Function Calling、RAG技术等核心概念,以及AI Agent和MCP协议等普通开发者可关注的机会。指出大模型应用开发关键在于将大模型与业务结合,开发者可通过开发工具和框架让大模型在实际业务中创造价值。
2026-01-06 11:47:44
678
原创 【2026必读】AI大模型架构选择:单智能体vs多智能体,开发者必知的真相
文章探讨AI大模型单智能体与多智能体架构选择。Anthropic的多智能体架构性能提升90.2%,但Devin指出其成本高(15倍)、上下文丢失、决策冲突等问题。作者认为,多智能体是未来方向,但现阶段单智能体更可靠,应根据场景选择。多智能体系统可通过Milvus向量数据库作为统一记忆中枢解决部分问题。
2026-01-06 11:39:55
934
原创 程序员收藏!一文掌握大模型回答质量提升技巧:RAG、微调与提示词工程
本文解析了提升大模型回答质量的三种方法:检索增强生成(RAG)连接外部知识获取最新信息;微调通过专门训练使模型掌握特定领域知识;提示词工程优化输入引导模型生成更准确内容。这三种方法各有优劣,实际应用中常结合使用,在准确性、时效性和成本间寻找平衡,释放大模型潜力。
2026-01-06 11:37:39
614
原创 珍藏干货:小白/程序员如何抓住AI大模型风口?完整学习路线与实战资源
文章介绍了AI大模型在各行业的应用现状,以及普通人如何通过学习AI技术抓住这一风口。详细提供了不同人群利用AI工具的方法,系统化的学习路线和丰富资源,包括基础理论、实战项目、行业报告等。适合应届生、零基础转型者和传统开发者等人群学习。掌握AI大模型技术已成为当前时代的重要技能,将为个人发展带来巨大机遇。
2026-01-06 11:35:03
635
原创 大模型开发必备:Dify多Agent架构全解析(建议收藏)
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。
2026-01-06 11:32:01
792
原创 【必看收藏】告别木偶Agent:用分层任务拆解构建可靠智能体系统
文章讨论了AI Agent"不听话"问题及解决方案。通过数据库被删案例,指出单体Agent因缺乏行动框架易出错。提出分层任务拆解解决方案,通过"规划师-执行者"架构分离思考与行动,并介绍用Python和强化学习构建可靠Agent的方法。最后讨论评估-优化器模式和奖励塑造等进阶技术,帮助构建真正能"思考-行动"的智能体。
2026-01-05 20:56:35
645
原创 【值得收藏】大模型学习指南:5种微调技术、5种智能体模式、5种分块策略全掌握
这篇文章系统介绍了大模型核心技术,包括Transformer与混合专家(MoE)架构、5种高效微调技术(如LoRA及其变种)、传统RAG与Agentic RAG的对比分析、5种智能体设计模式、文本分块策略及智能体系统等级划分。内容涵盖从基础理论到实际应用的完整技术栈,为开发者提供了全面的大模型学习路径和实战指导,适合从入门到进阶的系统学习。
2026-01-05 20:54:02
1045
原创 【必收藏】提示词工程:零门槛解锁大模型核心能力的实战指南
提示词工程是解锁大模型能力的核心技术,通过优化输入而非修改模型参数,可显著提升输出质量。文章系统介绍了提示词的六要素框架、模板设计方法、进阶技巧,以及通用模型与推理模型的区别与应用场景。最后通过员工咨询分类、文档审阅等实战案例,展示了提示词工程的具体应用方法和效果。
2026-01-05 20:51:26
1292
原创 《12-Factor Agents》构建可靠LLM应用:从循环到工程化的实践指南(建议收藏)
本文基于《12-Factor Agents》理念,提出构建可靠LLM应用的12项核心原则,强调不应让LLM完全控制流程,而应在结构化框架内使用LLM能力。关键包括:管理提示词和上下文窗口、实现结构化输出、统一状态管理、预定义控制流、构建小型专注Agent等。通过工程化方法,解决传统Agent控制流不可预测、错误处理困难、状态管理混乱和可观测性差等问题,帮助开发者构建真正可用的生产级AI系统。
2026-01-05 20:47:33
578
原创 AI Agent入门到精通:技术原理、市场趋势与开发实战(必学收藏)
AI Agent是一种能自主感知、思考和执行任务的AI程序,具备记忆、工具调用和自主规划能力,与普通大模型的根本区别在于"按目标办事"。当前国内外市场呈现"冰火两重天",国内处于概念期,目标用户主要为开发者和职场人士。未来将向B端(企业提效)和C端(个人赋能)分化,垂直场景率先爆发。普通人可作为使用者提升效率,从业者可开发垂直行业专用Agent,开发者可构筑技术壁垒,提前布局智能体时代红利。
2026-01-05 20:38:57
654
原创 【收藏必学】Context Engineering:解决大模型“失忆症“的关键技术,RAG的替代方案
从追求酷炫概念,回归解决实际问题。RAG也好,上下文工程也罢,最终目的都是让AI更准确、更可靠地回答问题。作为开发者,我们要警惕那些听起来高大上的术语。与其争当"RAG专家",不如多花时间研究:用户真正需要什么信息?模型在什么情况下会"失忆"?如何用最简单的方法提升系统稳定性?毕竟,能解决问题的技术,才是好技术。至于叫什么名字,没那么重要。只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
2026-01-05 20:34:38
628
原创 收藏!大模型时代必备:一文看懂企业知识库搭建秘诀,小白也能学会!
文章探讨了在大模型时代如何高效搭建企业知识库,强调了文档解析质量对知识库效果的决定性作用。作者分析了8家AI初创团队的经验,指出高质量数据源是构建有效知识库的基础。重点介绍了TextIn智能文件数据处理平台的优势,包括分区提取、表格精准识别、多语言支持等功能,以及如何基于TextIn解析的Markdown格式在扣子平台上构建企业知识库。文章强调文档解析质量决定了AI理解的上限,推荐开发者将TextIn作为文档预处理引擎,提升大模型应用效果。
2026-01-05 20:31:51
754
原创 2026年AI Agent学习指南:收藏!从传统BI到自主决策伙伴的完整转型路线图
AI Agent正推动商业智能从被动数据展示向主动决策伙伴转变,通过感知、推理、规划与行动、学习与适应四大核心能力,实现深度自助式BI、主动洞察分析等应用。企业可构建以语义层为核心的Agentic BI平台,分阶段实施,破解"数据分析师瓶颈",构建统一"数据语言",提升数据资产回报率,实现数据驱动业务价值最大化。
2026-01-04 13:48:10
953
原创 【收藏必看】一文搞懂工作流与智能体的本质区别,避免AI转型踩坑
工作流与智能体本质区别在于:工作流基于预设规则执行确定性任务,如导航软件;智能体则能自主决策、适应变化并持续学习,如自动驾驶。前者适用于规则明确、需稳定性的场景,后者适合复杂目标、多变环境。最佳实践是采用混合架构,结合两者优势,实现高效且智能的自动化系统。
2026-01-04 11:40:45
793
原创 收藏必备:构建生产级智能RAG系统,从数据处理到Agent驱动的全链路开发
检索增强生成(Retrieval-Augmented Generation, RAG)已成为构建高级知识问答系统的核心技术。然而,从一个简单的原型到一个复杂、稳定且高效的生产级RAG系统,开发者需要跨越诸多挑战。本文将基于一个具体的实践案例------以某型号工业设备的故障维修手册为知识源,深入探讨如何设计并实现一个包含数据预处理、多策略检索、智能体规划、思维链(CoT)推理及自动化评估的完备RAG 系统。
2026-01-04 11:35:23
630
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅