机器学习的能源消耗一直是业界关注的焦点。从电子邮件摘要、聊天机器人到荷马-辛普森演唱新金属乐的视频,背后的人工智能模型都在大量消耗着电力,以兆瓦时计的服务器费用令人咋舌。然而,关于这些成本的具体数字,似乎无人能给出确切的答案,即便是这些技术背后的公司也不例外。
热门AI项目链接:
https://www.suanjiayun.com/mirrorDetails?id=66d57559d0cf7ac9187afd90
现有的估计数字存在,但专家指出,这些数字往往是不全面的、偶然的,仅能提供人工智能总能耗的一个模糊轮廓。这是因为机器学习模型的能耗因其配置的不同而有很大差异。而最有能力提供详细账单的公司,如 Meta、微软和 OpenAI 等,并未公开这些信息。(微软云计算运营和创新首席技术官朱迪-普里斯特在电子邮件中表示,公司正在“开发方法以量化人工智能的能源使用和碳影响,并研究如何提高大型系统在训练和应用阶段的效率”。OpenAI 和 Meta 未对此作出回应。)
一个可以确定的关键点是,模型首次训练与向用户部署之间的能耗差异。特别是训练阶段,其能耗极高,远超传统数据中心的活动。例如,训练一个像 GPT-3 这样的大型语言模型,估计需要消耗大约 1,300 兆瓦时的电力,相当于约 130 个美国家庭一年的用电量。相比之下,观看一小时的 Netflix 流媒体节目大约只需要 0.8 千瓦时(即 0.0008 兆瓦时)的电力。这意味着要消耗与训练 GPT-3 相同的电量,你需要观看 162.5 万小时的节目。
然而,这些数字如何适用于当前最先进的系统,仍然是个未知数。随着人工智能模型规模的不断扩大,能耗可能进一步增加。但另一方面,公司可能正在采取措施提高系统的能效,这可能会抑制能源成本的上升。
“Hugging Face”这家法美人工智能公司的研究员萨沙-卢奇奥尼指出,进行最新估算的挑战在于,随着人工智能技术的盈利性增强,公司变得更加保守。过去,像 OpenAI 这样的公司会公开其训练细节,包括使用的硬件和训练时间。但对于 ChatGPT 和 GPT-4 等最新模型,这些信息却不再公开,Luccioni 表示:“对于 ChatGPT,我们不知道它的规模有多大,不知道底层模型有多少参数,也不知道它在何处运行……它可能就像是三只穿着风衣的浣熊,因为我们都不知道幕后究竟是什么。”
在国内,为了有效控制各种成本,同时解决当前算力供需失衡的问题,一系列算力租赁平台如雨后春笋般涌现。这些平台旨在为有算力需求的企业和个人提供便捷、高效、成本可控的算力服务,从而推动人工智能、大数据、云计算等领域的快速发展。
这些算力租赁平台具有以下特点:
灵活配置:用户可以根据自己的需求,随时调整算力资源,实现按需分配,避免资源浪费。
成本优势:通过租赁算力,用户无需购买昂贵的硬件设备,降低了企业运营成本,提高了资金使用效率。
一站式服务:算力租赁平台提供从硬件选购、部署、运维到技术支持的一站式服务,让用户专注于业务创新。
安全可靠:平台采用先进的技术手段,确保用户数据安全和算力稳定运行。
丰富场景:算力租赁平台覆盖人工智能、大数据、区块链等多个领域,满足不同用户的需求。