素数普遍公式与哥德巴赫猜想

详见百度百科【素数普遍公式】

公元前250年同样是古希腊的数学家埃拉托塞尼提出一种筛法

(一)“要得到不大于某个自然数N的所有素数,只要在2---N中将不大于

的素数的倍数全部划去即可”。

(二)将上面的内容等价转换:“如果N是合数,则它有一个因子d满足1<d≤

(三)再将(二)的内容等价转换:“若自然数N不能被不大于

的任何素数整除,则N是一个素数”。

见(代数学辞典[上海教育出版社]1985年。屉部贞世朗编。259页)。

(四)这句话的汉字可以等价转换成为用英文字母表达的公式:

...(1)

其中

表示顺序素数2,3,5,,,,,。

若N<

则N是一个素数。

(五)可以把(1)等价转换成为用同余式组表示:

由于(2)的模

两两互素,根据孙子定理(在范围内有唯一解)

例如,k=1时,

,解得N=3,5,7。求得了(3,)区间的全部素数。

k=2时,

,解得N=7,13,19;

,解得N=5,11,17,23。

求得了(5,

区间的全部素数。

k=3

k=3时

 

31

7; 37

13; 43

19

11; 41

17; 47

23

29

求得了(7,

仿此下去可以一个不漏地求得任意给定数以内的全部素数。

用于哥德巴赫猜想

怎样使得两个自然数相加和相减都成为素数(参见台尔曼公式),即n+X成为素数 [4],n-X也是素数。根据除法算式定理:“给定正整数a和b,b≠0,存在唯一整数q和r(0≤r<b),使a=bq+r”。再根据同余定理:“每一整数恰与0,1,2,3,...,m-1中一数同余(mod m)”。所以,任给一个自然数n (n>4),都可以唯一表示成:

其中:

表示顺序素数2,3,5,,,,,。

是否存在:

......(4)

并且:

这样解得的​​​​​​​​​​​​​​

,如果

,则

都是素数。

因为:

这个就是哥德巴赫猜想

范例

设n=20,

构造X,

:

-

212739

四个解是:21,27,3,9。小于N-2的X有3和9,

我们得知,20+3与20-3是一对素数;20+9与20-9是一对素数。

这就是利用素数判定法则:最小剩余不为零,并且果

,n+X与n-X是一对素数。因为(n+X)+(n-X)=2n。这就是著名的哥德巴赫猜想猜想, 我们需要证明(4)式必然有小于n-2的解,尽管我们现在不能证明它。 埃拉托斯特尼筛法的普遍公式已经为哥德巴赫猜想提供了合理框架,并且把问题转入到初等数论范围。

清华大学出版社【品数学】5页,介绍我的工作。

伊朗国家用波斯语介绍我的工作:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值