前言
近年来,人工智能技术在多个领域呈现出迅猛的发展态势,不仅推动了相关产业的进步,也带来了更多的就业机遇。
一、AI 人才需求变化
据全国组织机构统一社会信用代码数据服务中心统计,2024年上半年我国人工智能企业数量同比增长35.65%。人工智能(以下简称AI),被视为抓住新一轮科技革命和产业发展的关键领域,正在推动人才需求的快速变化。
01、岗位需求增长
随着 AI 技术的不断发展,自然语言处理、深度学习、机器人算法、智能驾驶系统工程师等岗位的招聘需求呈现出显著增长态势。北京大学国家发展研究院与智联招聘联合发布的《AI 大模型对我国劳动力市场潜在影响研究》显示,2024 年上半年,自然语言处理岗位招聘职位数同比增长 111%,深度学习岗位增速为 61%,机器人算法岗位增速达 76%,智能驾驶系统工程师岗位增速为 49%。
这些数据充分表明,AI 技术的发展极大地带动了相关人才的需求。例如,在大语言模型领域,自然语言处理岗位的需求增长尤为突出,这得益于大语言模型在智能客服、内容创作和语言翻译等场景的广泛应用。
02、薪资待遇提升
自然语言处理和深度学习岗位作为大模型相关岗位的代表,其招聘薪资在近几年有了显著提升。2024 年上半年,自然语言处理岗位平均招聘月薪为 24007 元,同比增长 11%;深度学习岗位平均招聘月薪为 26279 元,同比增长 2%。
大模型相关岗位招聘薪资上涨的原因主要有两方面。一方面,企业为了在激烈的市场竞争中保持优势,愿意投入更多资金来吸引和培育专业技术人才。大模型技术作为未来人工智能发展的重要方向,吸引了大量企业资本涌入。另一方面,符合条件的人才相对稀缺。大模型相关岗位的专业技能要求较高,对人才的综合素质提出了更高的要求。
03、学历经验要求提高
大模型岗位对硕博学历及工作经验的要求不断提高。猎聘高级副总裁李晓峰介绍,当下人工智能工程师在人才市场上处于供不应求的状态,且有 “四高” 特征:高学历人才占比高,硕博人才占比 70% 左右;年轻人才占比高,35 岁以下人才占比 90% 左右;留学人才占比高,近 10%;薪酬水平高,平均年薪 40 万左右。
今年上半年,自然语言处理岗位中,要求硕博学历的占比为 35.8%,比去年同期提高 5.5 个百分点;要求 3 - 5 年经验的占比 33.8%,比去年同期提高 2 个百分点,要求 5 年以上经验的占比 14.1%,比去年提高 3 个百分点。深度学习岗位中,要求硕博学历的占比为 45.5%,比去年同期提高 1.5 个百分点;要求 3 - 5 年经验的占比 34%,比去年同期提高 3 个百分点。这与岗位的技术门槛和业务需求密切相关。大语言模型相关岗位涉及编程、建模、算法优化等多个方面的工作内容,专业技术门槛较高,因此需要高学历人才。
同时,企业往往需要人才进行算法创新和模型研发,从而推进大模型在各个业务场景落地,这就需要人才具有较为丰富的实战经验。
04、必备技能明确
必备技能反映了岗位对专业技术的要求,也为求职者明确了学习和提升的方向。编程语言、机器学习框架、神经网络是自然语言处理和深度学习岗位的必备技能。在自然语言处理岗位中,Python、C/C++、Java 等编程语言要求位列前几位,PyTorch、TensorFlow 两大机器学习框架 / 工具也占据重要位置,CNN、DNN、RNN 等神经网络同样位列前十。深度学习岗位中,技能要求与自然语言处理岗位类似,包括 Python、C/C++、Java 等编程语言,PyTorch、TensorFlow、Transformer、Caffe 等机器学习 / 深度学习框架,以及 ANN、DNN 等神经网络。
二、AI 对不同岗位的影响
、
编辑 / 翻译工作由于其工作任务包含较多的文本处理、资料收集整理等内容,与大语言模型的功能高度重合,因此最易受大模型影响。智联招聘发布的报告显示,编辑 / 翻译工作的 “大语言模型影响指数” 较高,很多基础的编辑和翻译工作可以被大模型工具替代。
相比之下,研发岗位由于处在技术发展前沿,对新技术的接受和应用更快,所以招聘调整也更快。以软件 / 硬件研发岗位为例,随着大模型技术的发展,该岗位内部易受大模型影响的工作内容在减少,能够迅速针对大模型技术做出调整,如在招聘要求上更加注重与大模型技术结合的能力。“大语言模型影响指数” 高的职业,如客服 / 运营、销售 / 商务拓展等,其 2022 - 2024 年间招聘量占比下降的幅度较大。这可能是因为这些职业中的一部分基础工作内容可以被大模型工具替代,未来需要的人员减少。
各职业大类的招聘量变化
同时,这些职业对人员的能力要求提高,要求本科以上学历的职位比例较 2022 年提高 1 - 4 个百分点,对工作经验的要求也在增加,如三年以上工作经验被越来越多地写进 “任职要求” 中。
三、职场人的适应策略
在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,详尽的全套学习资料,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。
无论是初学者,还是希望在某一细分领域深入发展的资深开发者,这样的学习路线图都能够起到事半功倍的效果。它不仅能够节省大量时间,避免无效学习,更能帮助开发者建立系统的知识体系,为职业生涯的长远发展奠定坚实的基础。
这份完整版的AI大模型全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的AI大模型全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

最后
人工智能技术的快速发展既是机遇也是挑战。不论企业还是个人,都需要认识到技术进步带来的积极影响,并准备好应对由此引发的各项变化,通过不断学习、创新和适应,确保在人工智能时代抓住机遇。