- 博客(97)
- 收藏
- 关注
原创 期望最大化(EM)算法:从理论到实战全解析
本文深入探讨了期望最大化(EM)算法的原理、数学基础和应用。通过详尽的定义和具体例子,文章阐释了EM算法在高斯混合模型(GMM)中的应用,并通过Python和PyTorch代码实现进行了实战演示。
2024-08-06 11:34:36 1056
原创 支持向量机SVM:从数学原理到实际应用
支持向量机(SVM)属于线性分类器的一种,旨在通过一个决策边界将不同的数据点分开。在二维平面中,这个决策边界是一条直线;在三维空间中是一个平面,以此类推,在N维空间,这个决策边界被称为“超平面”。例子: 在二维平面上有红色和蓝色的点,线性分类器(如SVM)会寻找一条直线,尽量使得红色点和蓝色点被分开。在SVM算法中,"支持向量"是指距离超平面最近的那些数据点。这些数据点被用于确定超平面的位置和方向,因为它们最有可能是分类错误的点。例子。
2024-08-06 11:32:01 942
原创 KMeans算法全面解析与应用案例
本文深入探讨了KMeans聚类算法的核心原理、实际应用、优缺点以及在文本聚类中的特殊用途,为您在聚类分析和自然语言处理方面提供有价值的见解和指导。
2024-08-05 10:55:11 1117
原创 NLP文本生成全解析:从传统方法到预训练完整介绍
文本生成是自然语言处理的一个核心子领域,它涉及使用模型来自动创建自然语言文本。这种生成可以是基于某些输入的响应,如图像或其他文本,也可以是完全自主的创造。文本生成的任务可以是简单的,如自动回复邮件,也可以是更复杂的,如编写新闻文章或生成故事。确定目标和约束:明确生成文本的目标和约束条件,如风格、语言和长度等。内容的生成:基于预定义的目标和约束条件来生成内容。评价和优化:使用不同的评价指标来测试生成的文本,并进行必要的优化。定义。
2024-08-03 08:00:00 624
原创 NLP技术如何为搜索引擎赋能
语义搜索是一种理解查询的语义或意图的搜索方法,而不仅仅是匹配关键词。它考虑了单词的同义词、近义词、上下文和其他相关性因素。个性化搜索建议是基于用户的历史行为、偏好和其他上下文信息为其提供的搜索建议,目的是为用户提供更为相关的搜索体验。多语言处理是指计算机程序或系统能够理解、解释和生成多种语言的能力。方言处理是指对同一种语言中不同的方言或变种进行处理的能力。随着信息时代的到来,搜索引擎已经成为我们日常生活中不可或缺的工具。但是,背后支持这一切的技术进步,特别是自然语言处理(NLP),往往被大多数用户所忽视。
2024-08-02 11:59:08 620
原创 一文解码语言模型:语言模型的原理、实战与评估
在本文中,我们深入探讨了语言模型的内部工作机制,从基础模型到大规模的变种,并分析了各种评价指标的优缺点。文章通过代码示例、算法细节和最新研究,提供了一份全面而深入的视角,旨在帮助读者更准确地理解和评估语言模型的性能。本文适用于研究者、开发者以及对人工智能有兴趣的广大读者。
2024-08-02 11:56:36 709
原创 如何成为AI产品经理,抢占市场紧缺岗位,享受高薪待遇与广阔发展空间
随着人工智能(AI)技术的快速发展,AI产品经理成为了市场上极其紧缺的人才。无论是大型科技公司还是初创企业,都在积极招募具备AI相关项目经验的专业人士。
2024-08-01 20:55:25 1603
原创 解码知识图谱:从核心概念到技术实战
知识图谱作为一种特殊的信息表示技术,其在近年来在各种应用领域中都有所体现,尤其在自然语言处理(NLP)中,它的重要性更是日益凸显。知识图谱能够高效、有组织地存储和管理大量的信息,而且能够用图的形式表示出这些信息之间的关系,使得信息更具有语境,更易于理解和应用。定义:知识图谱是一个结构化的信息库,其中的信息以图的形式组织,每个节点表示一个实体,每条边表示两个实体之间的关系。例子:考虑一种场景,我们有一个音乐知识图谱。
2024-08-01 19:40:33 849
原创 【技术转型】程序员如何向AI大模型领域转型?
在程序员圈子中,技术转型一直是个热门话题。随着年龄的增长和技术的快速发展,许多基层程序员开始考虑如何在职业生涯中寻求突破。近年来,人工智能(AI)尤其是大模型技术的发展势头迅猛,对优秀人才的需求激增。因此,对于想要在职场中占据先机的程序员来说,向AI大模型领域转型显得尤为重要。那么,这样的转型成功率有多高呢?
2024-07-31 22:08:56 619
原创 NLP机器翻译全景:从基本原理到技术实战全解析
机器翻译是使计算机能够将一种语言转化为另一种语言的技术领域。本文从简介、基于规则、统计和神经网络的方法入手,深入解析了各种机器翻译策略。同时,详细探讨了评估机器翻译性能的多种标准和工具,包括BLEU、METEOR等,以确保翻译的准确性和质量。
2024-07-31 20:44:18 280
原创 AI 大模型到底有没有实际落地场景?
可太多了,说‘全面开花’都毫不为过!!电商、教育、娱乐、办公室、医疗、客服等等行业,几乎都有落地。在央广总台举办的 '2024·AI盛典中就展示了很多AI落地场景。AI辩论赛:AI撒贝宁主持辩论赛,参赛选手是A|老子、AI孔子、AI韩非子、AI苏格拉底;AI’复活’兵马俑:通义EMO9技术,'复活’兵马俑,与歌手合唱;AI陪伴式宠物:24小时陪伴式AI大熊猫亮相;AI修复壁画:AI技术与专业修复师合作,通过自研的多模态AI大模型9,快速掌握并修复壁画重现原始风貌。
2024-07-30 15:50:38 839
原创 一文概览NLP句法分析:从理论到PyTorch实战解读
本文全面探讨了自然语言处理(NLP)中句法分析的理论与实践。从句法和语法的定义,到各类句法理论和方法,文章细致入微地解析了句法分析的多个维度。最后,通过PyTorch的实战演示,我们展示了如何将这些理论应用到具体任务中。本文旨在为读者提供一份全面、深入且实用的句法分析指南。
2024-07-30 10:40:06 421
原创 28岁从IT转行AI大模型,月薪35k,属实是爽歪歪
人到中年不得不慌,家里上有老下有小,今天交了补课费明天交养老费。家里的大梁全靠我一个抗。再做IT这行也没有盼头了,一直止步不前。前两天大学室友喊我别干了,快转行!!!!兄弟早已经转行干AI大模型了,现在在一线大厂,月薪35k。他说:赛道选的好,只会越赚越多。作为曾经的室友,我不耻下问,求他分享一下转行经验,毕竟已经28了,贸然转行风险太大。他看我压力太大,也是真的想帮我,把所有的资料与经验都倾囊相授。我粗略看了一下,惊到了,能成功转行赚35k的资料果然牛逼!
2024-07-29 15:35:44 552
原创 词!自然语言处理之词全解和Python实战!
本文全面探讨了词在自然语言处理(NLP)中的多维角色。从词的基础概念、形态和词性,到词语处理技术如规范化、切分和词性还原,文章深入解析了每一个环节的技术细节和应用背景。特别关注了词在多语言环境和具体NLP任务,如文本分类和机器翻译中的应用。文章通过Python和PyTorch代码示例,展示了如何在实际应用中实施这些技术。
2024-07-29 11:14:36 728
原创 自然语言处理历史史诗:NLP的范式演变与Python全实现
本文全面回顾了自然语言处理(NLP)从20世纪50年代至今的历史发展。从初创期的符号学派和随机学派,到理性主义时代的逻辑和规则范式,再到经验主义和深度学习时代的数据驱动方法,以及最近的大模型时代,NLP经历了多次技术革新和范式转换。文章不仅详细介绍了每个阶段的核心概念和技术,还提供了丰富的Python和PyTorch实战代码。
2024-07-29 11:12:57 599
原创 深度解析BERT:从理论到Pytorch实战
本文从BERT的基本概念和架构开始,详细讲解了其预训练和微调机制,并通过Python和PyTorch代码示例展示了如何在实际应用中使用这一模型。我们探讨了BERT的核心特点,包括其强大的注意力机制和与其他Transformer架构的差异。
2024-07-28 08:45:00 591
原创 AI大模型新风口下的高薪机遇,不可错过!!!
近两年来,随着全球经济形势的变化和科技行业的调整,我们见证了众多大厂频频裁员,大厂光环不再如昔日那般耀眼。然而,尽管如此,大厂在薪资待遇上仍然占据优势,往往是求职者心中的首选。在这样的背景下,AI大模型作为新兴技术领域,正逐渐成为新的职业风口,为求职者提供了高薪的机遇。AI大模型无疑是一个充满机遇的新风口,它为求职者提供了高薪的工作机会,同时也对人才提出了更高的要求。在这个相对不那么“卷”的市场中,只有不断提升自己的专业能力和实践经验,才能抓住这一波职业发展的机遇。
2024-07-27 18:21:06 669
原创 一文读懂强化学习:RL全面解析与Pytorch实战
在本篇文章中,我们全面而深入地探讨了强化学习(Reinforcement Learning)的基础概念、主流算法和实战步骤。从马尔可夫决策过程(MDP)到高级算法如PPO,文章旨在为读者提供一套全面的理论框架和实用工具。同时,我们还专门探讨了强化学习在多个领域,如游戏、金融、医疗和自动驾驶等的具体应用场景。每个部分都提供了详细的Python和PyTorch代码示例,以助于更好地理解和应用这些概念。
2024-07-27 11:49:33 1099
原创 解码注意力Attention机制:从技术解析到PyTorch实战
在本文中,我们深入探讨了注意力机制的理论基础和实际应用。从其历史发展和基础定义,到具体的数学模型,再到其在自然语言处理和计算机视觉等多个人工智能子领域的应用实例,本文为您提供了一个全面且深入的视角。通过Python和PyTorch代码示例,我们还展示了如何实现这一先进的机制。
2024-07-27 11:45:05 1196
原创 零基础人员如何入门AI大模型?这是一份给你的学习路径指南
在AI(人工智能)技术快速发展的今天,越来越多的人开始关注AI大模型,希望能够从中找到新的职业发展机会。对于零基础的学习者而言,入门AI大模型可能会感到有些棘手,但只要遵循正确的方法和步骤,就能够逐步建立起自己的知识体系和技术能力。以下是为零基础人员准备的一份学习路径指南,希望能够帮助你顺利入门AI大模型领域。入门AI大模型是一个循序渐进的过程,需要时间和耐心。通过以上学习路径,即使是零基础的学习者也能够逐步建立起对AI大模型的理解和应用能力。
2024-07-26 19:49:39 732
原创 全面掌握胶囊网络:从基础理论到PyTorch实战
本文全面深入地探讨了胶囊网络(Capsule Networks)的原理、构建块、数学模型以及在PyTorch中的实现。通过本文,读者不仅能够理解胶囊网络的基础概念和高级数学原理,还能掌握其在实际问题中的应用方法。
2024-07-26 10:53:13 742
原创 ResNet详解:网络结构解读与PyTorch实现教程
深度残差网络(Deep Residual Networks,简称ResNet)自从2015年首次提出以来,就在深度学习领域产生了深远影响。通过一种创新的“残差学习”机制,ResNet成功地训练了比以往模型更深的神经网络,从而显著提高了多个任务的性能。深度残差网络通过引入残差学习和特殊的网络结构,解决了传统深度神经网络中的梯度消失问题,并实现了高效、可扩展的深层模型。梯度消失问题发生在神经网络的反向传播过程中,具体表现为网络中某些权重的梯度接近或变为零。这导致这些权重几乎不会更新,从而阻碍了网络的训练。
2024-07-26 10:51:04 999
原创 这是我见过最强的AI大模型教程!免费白嫖,可以上车!!
随着人工智能技术的飞速发展,AI大模型正逐步渗透到我们生活的方方面面。但许多人还未意识到它们的存在或不知道如何利用这些技术。由于缺乏了解和必要的技能,很多人还未开始尝试使用这些强大的工具,来帮助我们工作和成长。掌握AI大模型的使用对于个人和企业来说都变得越来越重要。它们不仅能提高工作效率,还能帮助我们更好地理解和解决问题。有效使用AI大模型的人和企业将拥有明显的竞争优势。现在各个行业的领域大模型的知识已经超过了人的知识。未来淘汰你的不是机器人,而是会使用大模型的人。
2024-07-25 14:54:52 1100
原创 一文搞懂深度信念网络!DBN概念介绍与Pytorch实战
本文深入探讨了深度信念网络DBN的核心概念、结构、Pytorch实战,分析其在深度学习网络中的定位、潜力与应用场景。
2024-07-25 10:37:53 707
原创 解密长短时记忆网络(LSTM):从理论到PyTorch实战演示
本文深入探讨了长短时记忆网络(LSTM)的核心概念、结构与数学原理,对LSTM与GRU的差异进行了对比,并通过逻辑分析阐述了LSTM的工作原理。文章还详细演示了如何使用PyTorch构建和训练LSTM模型,并突出了LSTM在实际应用中的优势。
2024-07-25 10:35:12 966
原创 AI时代下的新角色——AI产品经理的重要性与技能要求
AI产品经理的角色在AI时代的重要性不言而喻。他们不仅需要继承和发展传统产品经理的技能,还需要不断学习和适应新的AI技术。随着AI技术的进一步成熟和应用,AI产品经理将扮演更加关键的角色,成为推动企业创新和转型的关键力量。对于有志于从事AI产品管理的人来说,这是一个充满挑战和机遇的时代。
2024-07-24 18:57:15 979
原创 前馈神经网络解密:深入理解人工智能的基石
本文深入探讨了前馈神经网络(FNN)的核心原理、结构、训练方法和先进变体。通过Python和PyTorch的实战演示,揭示了FNN的多样化应用。
2024-07-24 11:37:01 957
原创 Sora这么火!成为一名AI产品经理有多难?
之前互联网的大热门事件,就是OpenAI发布了文生视频工具-Sora。而,AI产品经理市场需求也是水涨船高,薪资更是大幅上涨。不少25/26届,甚至27届同学也都跑来问,从现在开始准备,目标AI产品经理有没有机会呢?而,这个问题确实是问对了人,由于我自身是AI技术背景出身,也算是早期AI产品经理一员(第一份产品工作就是在腾讯担任AI产品经理,当时也是0经验通过面试)。身边也有不少AI产品,对于AI产品经理这一岗位的理解也相对完整。。
2024-07-23 17:03:10 1570
原创 GAN!生成对抗网络GAN全维度介绍与实战
本文为生成对抗网络GAN的研究者和实践者提供全面、深入和实用的指导。通过本文的理论解释和实际操作指南,读者能够掌握GAN的核心概念,理解其工作原理,学会设计和训练自己的GAN模型,并能够对结果进行有效的分析和评估。
2024-07-23 10:27:25 1627
原创 头疼!卷积神经网络是什么?CNN结构、训练与优化一文全解
本文全面探讨了卷积神经网络CNN,深入分析了背景和重要性、定义与层次介绍、训练与优化,详细分析了其卷积层、激活函数、池化层、归一化层,最后列出其训练与优化的多项关键技术:训练集准备与增强、损失函数、优化器、学习率调整、正则化技巧与模型评估调优。旨在为人工智能学者使用卷积神经网络CNN提供全面的指导。
2024-07-23 10:23:38 977
原创 2024 年 AI 的机会不仅在行业大模型,而且是唯一的机会
首先通用大模型,对于普通公司来讲没有机会了。国外的OpenAI、谷歌、Meta 、Amazon、假设还有Microsoft 、 Nvidia这样几个公司再加上从这几个公司出走的一些高级人材的创业公司外,别人是没有机会搞的。国内,考虑到国内的特殊性,这个更是资源与智力的结合,极少极少的公司才有可能做成平台型的公司,尽管你可能不喜欢文心一言、通义千问、星火,或者不喜欢百川,不喜欢智谱,但是你要知道,这是一个对各方面要求都高的行业。
2024-07-22 15:22:31 940
原创 计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
计算机视觉不仅是一门研究如何使机器理解和解释视觉世界的科学,更是一种追求让机器拥有与人类相近视觉处理能力的技术。它通过分析数字图像和视频,使得机器能够识别、追踪和理解现实世界中的对象和场景。此外,计算机视觉还包括图像恢复、三维重构等深入的研究方向。图像分类与识别作为计算机视觉的基石,其技术演进完美地反映了整个领域的快速进展。从手工设计的特征到复杂的深度学习模型,该领域不仅展示了计算机视觉的强大能力,还为未来的创新和发展奠定了坚实的基础。
2024-07-22 11:37:15 1142
原创 解码Transformer:自注意力机制与编解码器机制详述与代码实现
Transformer自从被引入以来,已经深刻改变了自然语言处理和许多其他序列处理任务的面貌。通过其独特的自注意力机制,Transformer克服了以前模型的许多局限性,实现了更高的并行化和更灵活的依赖捕获。出现背景:了解了Transformer是如何从RNN和CNN的限制中诞生的,以及它是如何通过自注意力机制来处理序列的。自注意力机制:详细解释了自注意力机制的计算过程,以及如何允许模型在不同位置之间建立依赖关系。Transformer的结构。
2024-07-22 11:35:15 745
原创 一文详解自然语言处理两大任务与代码实战:NLU与NLG
自然语言处理(NLP)是一门交叉学科领域,涵盖了计算机科学、人工智能、语言学等多个学科。它旨在使计算机能够理解、解释和生成人类语言的方式,从而创建与人类之间的自然、无缝的交互。自然语言处理的主要任务是让计算机能够像人类一样理解和生成自然语言。它能够让机器读懂人类的语言,使得人们与计算机的交互更加自然流畅。这不仅可以大大提高人机交互的效率,而且也为许多行业如客服、医疗、教育等提供了极大的便利。自然语言处理不仅是一门具有挑战性的科学,还是一项充满潜力的技术,能够推动许多行业和应用的发展。
2024-07-21 08:15:00 957
原创 编织人工智能:机器学习发展历史与关键技术全解析
机器学习是一门研究计算机如何利用经验改善性能的科学。它的主要目的是通过从数据中学习模式并作出预测或决策。在技术层面上,机器学习可以分为监督学习、无监督学习、半监督学习和强化学习等。机器学习作为人工智能的关键部分,在过去的几十年中取得了显著的进展。从最初的简单算法,到复杂的深度学习模型,再到当前的跨学科整合和伦理考虑,机器学习不断推动科技的前沿,影响着我们的生活方式和工作方式。因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。
2024-07-20 09:45:00 656
原创 AI大模型真的是大龄程序员的新出路吗?
大龄程序员转行至AI大模型领域并非遥不可及的梦想,而是充满机遇的现实选择。在这个过程中,你不仅能够重拾对技术的热情,还能开拓职业生涯的新篇章。面对未来的不确定性,主动出击,把握住AI大模型的风口,或许就是你职业生涯逆袭的关键。
2024-07-19 15:27:21 1439
原创 OpenCV实战:从图像处理到深度学习的全面指南
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。# 导入OpenCV库 import cv2 # 打印OpenCV版本 print(cv2 . __version__)4.5 .2OpenCV的设计目标是提供一套简单而且可扩展的计算机视觉库,使得它能够方便地在实际的应用、研究、开发中被使用。
2024-07-19 11:23:47 1249
原创 Pytorch 最全入门介绍,Pytorch入门看这一篇就够了
在这一部分,我们将会对Pytorch做一个简单的介绍,包括它的历史、优点以及使用场景等。DataLoader类提供了对数据集的并行加载,可以有效地加载大量数据,并提供了多种数据采样方式。dataset:加载的数据集(Dataset对象)batch_size:batch大小shuffle:是否每个epoch时都打乱数据num_workers:使用多进程加载的进程数,0表示不使用多进程# 数据转换])# 下载并加载训练集# 下载并加载测试集除了使用内置的数据集,我们也可以自定义数据集。
2024-07-19 11:21:00 643
原创 Python和PyTorch深入实现线性回归模型:一篇文章全面掌握基础机器学习技术
Python 是一种强大的编程语言,特别适合处理和分析大数据,广泛应用于各种科学计算中。Python有很多库可以方便地实现各种高级功能,例如:NumPy, Pandas, Matplotlib等。PyTorch 是一个开源的 Python 机器学习库,基于 Torch。它主要由 Facebook 的 AI 研究团队开发,用于实现深度学习算法。PyTorch 以张量为基本数据结构,可以在GPU或CPU上进行计算。具有动态定义计算图的特性,使得 PyTorch 在编写和调试模型方面更具优势。
2024-07-18 17:25:37 876
原创 深入Scikit-learn:掌握Python最强大的机器学习库
Scikit-learn是一个基于Python的开源机器学习库,它基于NumPy、SciPy和matplotlib,支持各种机器学习模型,包括分类、回归、聚类和降维等。除了提供大量的机器学习算法外,Scikit-learn还包括了一整套模型评估和选择的工具,以及数据预处理和数据分析的功能。简单易用却功能强大,是Scikit-learn受欢迎的重要原因。在接下来的文章中,我们将详细介绍如何使用Scikit-learn进行机器学习开发。
2024-07-18 17:17:44 598
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人