- 博客(621)
- 收藏
- 关注
原创 AI产品经理的必备技能与实践:从零构建AI产品
随着人工智能(AI)技术的迅猛发展,越来越多的企业开始重视并应用AI来提升业务效率和用户体验。作为AI产品经理,您将扮演着连接技术和商业需求的关键角色。本文将基于AI产业架构、产品能力模型以及AI产品经理的技能要求,为您详细解读如何成为一名成功的AI产品经理,并分享一些实际操作中的经验和技巧。
2025-05-19 22:15:28
632
原创 全国AI大模型岗位爆发!北上广深等各地高薪急聘!
随着DeepSeek等大模型的崛起,AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
2025-05-19 21:19:14
588
原创 图检索增强生成(GraphRAG):让AI真正理解复杂知识,小白收藏这一篇就够了!!
你是否曾经遇到过这样的情况:向ChatGPT提问专业问题时,它给出的答案看似合理,但实际上缺乏深度或存在事实错误?今天,我们将探索一项解决这一问题的前沿技术——图检索增强生成(GraphRAG),这项结合知识图谱与检索增强生成的创新方法正在彻底改变AI在专业领域的应用方式。
2025-05-19 20:51:48
453
原创 如何使用Ollama在本地运行Qwen3并支持MCP和工具使用?看完这篇你就懂了!!
Qwen3是阿里巴巴Qwen团队最新发布的开源大语言模型,提供具有竞争力的性能,高度模块化和工具使用能力。在本指南中,我将向您展示如何通过Ollama在本地运行Qwen3,并启用MCP(模型上下文协议)工具功能,如代码解释器、网络获取和时间查询。到最后,您可以构建由Qwen3驱动的智能助手,完全在您的机器上运行——无需云API密钥
2025-05-18 08:00:00
559
原创 【AI大模型】关于RAG应用中怎么高质量的进行数据召回——召回策略的研究
“ 数据召回是RAG技术的重要领域,而不同的召回策略甚至会产生完全不同的效果。”RAG技术的核心原理很简单,本质上就是在外部维护一个资料库,在进行大模型问答之前,先从资料库中找到相关的内容,然后一起输入到大模型中。但由于文档的复杂性,在进行文档处理时很难真正做到高质量的数据处理;因此,在做数据召回时就会面临着各种各样的问题。
2025-05-17 08:00:00
845
原创 产品经理35 岁不失业秘诀,这个赛道越来越吃香!
根据行业报告,近年来 AIGC(AI Generated Content) 领域岗位数量井喷式增长,AI大模型产品经理作为连接技术与市场的桥梁,正扮演着越来越重要的角色。这一趋势的背后,是企业对AI技术应用的迫切需求和对专业人才的高度渴求。然而,市场需求的激增也带来了人才供给的紧张,尤其是既懂技术又懂市场的复合型人才更是难求。AI大模型产品经理是一个在人工智能领域中具有关键作用的职位,他们负责策划、开发和管理基于大规模语言模型(如GPT系列、BERT等)的AI产品。他们不仅需要深入理解AI技术的核心
2025-05-16 13:51:10
884
原创 面对程序员35岁中年危机,我们该怎么办?为什么转行大模型是程序员最后的出路?
曾几何时 ,企业不停优化35岁以上老程序员,只因IT技术更新迭代快,学习效率低,精力差,不能再熬夜加班写代码,因此出现了大量前端转前台,后端转后厨,python 卖肠粉等互联网行业热梗,其中不乏戏谑自嘲,更多透漏中年程序员心酸和无奈。
2025-05-16 11:05:16
658
原创 【AI大模型】一文搞懂RAG构建知识库和知识图谱,小白收藏这一篇就够了!!
RAG(Retrieval-Augmented Generation,检索增强生成)技术通过检索增强生成,显著提升了知识问答的准确性和时效性。在构建知识库时,RAG通过向量数据库和动态更新机制,实现了高效的知识检索与生成;在构建知识图谱时,RAG通过GraphRAG和Graphusion等框架,实现了实体关系的精准抽取与图谱融合。
2025-05-15 12:04:22
887
原创 盘点12种VLM多模态大模型,文档结构化抽取,谁最强!收藏这一篇就够了!!
OCR能力:主要识别包括手写文本、数字印刷文本和带变音符号的文本。处理各种字体、布局和文档条件,同时保持文本识别的高精度。gemini-2.0-flash在ORC方面还挺强
2025-05-15 11:34:04
424
原创 10分钟了解大模型应用全貌 : 大模型应用架构(LLM application architecture)
大型语言模型(LLM)在应用中有着复杂的架构,它不仅涉及基本的输入输出.还包括安全过滤、提示优化和示例选择等多个关键组件,以确保响应的安全性与准确性。通过与外部工具的结合和多模型协作,大模型(LLM)能够弥补知识盲点并提高处理效率。通过结构化输出、向量数据库以及记忆和缓存技术的引入,进一步增强了模型的能力和系统的性能。在终端用户的使用感受中,通常,使用一个简单的提示词作为输入,大模型(如GPT)接收后返回给用户对应结果。
2025-05-14 11:50:29
747
原创 【AI大模型搭建】自己电脑搭建AI大模型详细教程,支持通义千问、Llama3、接口调用等
今天教程关于在自己电脑搭建大模型,支持开源的大模型,像主流的通义千问2.5,Llama3,教程还包括如何使用这些大模型做接口调用,实现自动化输出。如下图所示,这是我自己的电脑安装的两个AI大模型,一个是qwen 7b尺寸,另一个是llama3 8b尺寸:
2025-05-14 11:01:52
546
原创 资料分享丨《AI大模型基础》教材完整版(附290页文件下载)适合计算机高校学生,科研人员,AI开发从业者
《AI大模型基础》 是一本系统全面介绍大语言模型基础理论、架构、应用与调优的专业教材,由多位专家倾力打造,以通俗易懂的语言和详实的案例,为读者呈现大语言模型的全景图。
2025-05-13 19:17:14
383
原创 AI大模型入门指南 - MoE:小白也能看懂的“模型架构”全解析!
MoE通过“分而治之”的思想,为大模型突破参数规模与计算效率的瓶颈提供了新方向。随着国产模型DeepSeekMoE、Qwen-2.5 Max、国际标杆GPT-4的实践验证,MoE已成为下一代大模型的核心架构。
2025-05-13 11:34:39
904
原创 【AI大模型应用】5分钟完成5小时工作:DeepSeek在合同管理中的高效应用
在传统办公场景中,处理大量PDF合同数据往往需要繁琐的手动录入、核对和整理,使用这种方式办公,不仅耗时耗力,而且还容易出错,对很多职场人来说,相信多多少少都有类似的经历。然而,借助DeepSeek,只需几分钟就能自动完成数据提取、格式转换,甚至生成Excel表格、折叠目录和可视化树图。本文将展示如何借助AI,让合同管理从“手动苦力”升级为“智能高效”。
2025-05-13 10:49:23
980
原创 【AI大模型】透过 Dify 集成看 MCP 的优点和局限,收藏这一篇就够了!!
最近 MCP 火的一塌糊涂,似乎不拥抱就赶不上时代一样,然而我做了个服务测了下,似乎宣传>应用…文章有点长,先说结论:MCP 三个关键词:自动发现、标准化以及解耦合MCP 是 For Agent 的产物,非 Agent 下似乎没什么用处,比如在工作流中使用MCP 在应用上类似 Dify/Coze 等的插件,然而成熟度还差一些或许 MCP 更适合 Cursor/VS Code/Claude Desktop 等本地 IDE 集成的 Agent
2025-05-12 11:10:30
653
原创 Dify+数据库+ECharts打造数据可视化图表,让数据自己说话!
今天分享一下如何利用Dify平台,结合强大的Echarts图表库,轻松搭建工作流。将数据库中的数据直接转化为精美的可视化图表,让数据开口说话。
2025-05-12 10:21:08
1048
原创 AI大模型实战教程来了!从零开始打造MCP+Ollama集成
今天,向大家展示如何实现Ollama与MCP服务器的集成。实现步骤整个集成的主要步骤包括:创建测试以及使用MCP服务创建客户端文件来发送请求并启动服务从服务获取工具到客户端将工具转换为pydantic模型通过response format将工具(作为pydantic模型)传递给Ollama通过Ollama发送对话并接收结构化输出如果响应中包含工具,则向服务器发送请求
2025-05-11 08:00:00
594
原创 打起来了!MCP VS A2A,谁才是Agent的未来事实标准?看完这篇你就知道了!!
MCPMCP(Model Context Protocol)由Anthropic推出,标准化AI与外部工具/资源的交互,如数据库、API调用,增强智能体能力。介绍了 MCP 的总体架构和核心概念,并用一个例生成金融报告的例子来介绍 MCP 的运行流程。熟悉 MCP 的读者可以直接跳过本章。
2025-05-10 13:52:18
670
原创 【AI大模型】告别碎片化!两大先进分块技术如何提升RAG的语义连贯性?看完这一篇你就懂了
研究领域:检索增强生成(Retrieval-Augmented Generation, RAG)系统,结合自然语言处理(NLP)与信息检索技术。重要性:RAG通过动态整合外部知识,解决了传统大语言模型(LLMs)依赖静态预训练数据的局限性。在开放域问答、实时信息生成等场景中,RAG能显著提升生成内容的准确性和信息完整性。对知识密集型任务(如医疗问答、法律分析)至关重要,需高效管理大规模外部文档。
2025-05-10 11:14:58
812
原创 如何快速、免费搭建一个独属自己的个人知识库?(框架、要点)看完这一篇你就懂了!!
AI大模型层出不穷,不知大家使用的感受怎么样。作为码字一员,最大的感受是,AI大模型正在批量制造垃圾,反过来垃圾又在污染AI语料库,如此反复。“如果数据源、参考源是垃圾,得到的也只能是垃圾。”那么,如何控制数据源、参考源?
2025-05-09 11:56:48
596
1
原创 驳“RAG 已死”论:上下文窗口扩展≠RAG 终结
每次新的大语言模型问世,标题党总遵循着固定套路:“百万 tokens 级别上下文窗口的新模型横空出世!”紧接着各路热评纷至沓来:“RAG 技术已死!”“检索机制可以淘汰了!”“直接把所有数据灌进模型就行!”
2025-05-09 10:50:52
673
原创 【AI大模型】RAG技术深度解析:从原理到实战的大模型增强指南,收藏这一篇就够了!!
RAG(Retrieval-Augmented Generation,检索增强生成) 是一种将信息检索与文本生成相结合的技术,通过实时从外部知识库中检索相关文档,增强大语言模型(LLM)的生成准确性和事实性。其核心价值在于解决LLM的三大痛点:
2025-05-08 13:55:55
461
原创 【AI大模型入门教程】Agent记忆系统:6大核心操作全景解读,收藏这一篇就够了!!
【AI大模型入门教程】Agent记忆系统:6大核心操作全景解读,自LLM进入Agent时代,如何处理人机交互的历史信息和状态,一直是学术前沿思考的核心问题。因此,记忆模块(Memory)也就成为了研究重点。
2025-05-08 11:13:50
776
原创 AI大模型三种微调Fine-tuning方式深度分析,看到就是赚到!!
Prompt-tuning通过修政输入文本的提示(Prompt)来引导模型生成符合特定任务或情境的输出,而无需对模型的全量参数进行微调。这种方法利用了预训练语言模型 (PLM)在零样本或少样本学习中的强大能力,通过修改输入提示来激活模型内部的相关知识和能力。
2025-05-07 11:49:13
480
原创 【AI大模型】从零开始构建 Transformer 模型,全程干货,小白也能轻松拿捏!!
Transformer核心机制• 注意力机制:通过矩阵乘法实现动态掩码(Masking),模拟选择性关注历史词汇的能力。关键创新在于通过可学习的参数矩阵(Q/K)实现上下文感知的注意力分配。• 位置编码:采用正弦波编码为序列位置信息添加可学习的几何特征,突破传统RNN的顺序处理限制。• 嵌入空间:通过降维投影将稀疏的one-hot向量转化为稠密语义空间,实现词汇关系的分布式表示。
2025-05-07 10:41:17
912
原创 【AI大模型】不知道部署哪个版本?一文看懂Qwen3本地部署的配置要求,收藏这一篇就够了!!
本次Qwen3系列开源模型一共发布了8个不同尺寸,尺寸越大,显存占用越高。8个模型中有6个Dense(密集)模型,2个MoE(混合专家)模型。密集模型在推理过程中会激活所有参数,而 MoE 模型则采用稀疏激活策略,每次前向传递只激活一部分专家参数,在有限的计算预算下性能更高。
2025-05-06 14:27:18
1130
原创 【AI大模型】不懂Transformer的AI产品经理,自己组织的会只能当观众!
作为AI产品经理,你是否经历过这些场景?技术团队说"模型容量不够",你却不知道这和token拆分有什么关系用户抱怨对话机器人答非所问,你只能让工程师"再优化下算法"看到Vision Transformer在CV领域大杀四方,却不敢在需求会上提图像功能
2025-05-06 11:12:52
680
原创 AI大模型RAG检索系统的两大核心利器——Embedding模型和Rerank模型
“ Embedding和Rerank模型是RAG系统中的核心模型。”在RAG系统中,有两个非常重要的模型一个是Embedding模型,另一个则是Rerank模型;这两个模型在RAG中扮演着重要角色。Embedding模型的作用是把数据向量化,通过降维的方式,使得可以通过欧式距离,余弦函数等计算向量之间的相似度,以此来进行相似度检索。
2025-05-05 12:00:17
551
原创 Qwen3小模型实测:从4B到30B,到底哪个能用MCP和Obsidian顺畅对话?看完这一篇你就懂了!!
本文实测 Qwen3 系列本地模型(4B/8B/14B)与 Obsidian-MCP 的知识库交互效果,发现小模型存在工具调用失效、响应幻觉及上下文限制等问题。
2025-05-05 11:15:54
653
原创 【AI大模型】LangChain + 模型上下文协议(MCP):AI 智能体 Demo
在基于大语言模型构建应用时,一个核心痛点是 数据与工具的接入困难。模型虽然能力强大,但通常处于“沙盒”状态,无法直接访问外部环境。为此,RAG(检索增强生成)、微调、插件等方案陆续诞生。而 MCP 的目标正是统一接口协议,以便标准化集成上下文、工具、服务与数据源。
2025-05-04 08:00:00
786
原创 DeepSeek+RagFlow搭建企业级知识库:Docker镜像构建基础篇
随着AI技术的火热发展,企业和个人用户需要搭建知识库的需求越来越迫切。如果自己动手搭建一个功能强大的知识库对于非专业技术人员来说可能面临挑战,更别说那些非专业人士了。我在网上看了大量相关的教程,大多数都是搬砖,偶尔看到一些非搬砖大佬写的教程,总会省略一些细节,导致很多人就算面对教程也是各种踩坑,折腾很久最后也都放弃了。本文主要内容是利用RagFlow开源框架来搭建企业级知识库。初衷是考虑到大多数,非技术人员也能搭建,所以我从构建镜像到安装整个过程,为大家提供傻瓜式的教程。
2025-05-03 08:00:00
981
原创 比肩DeepSeek-R1的QwQ-32B,单卡击碎6710亿参数资源枷锁?本地部署+函数工具调用实战教程!小参数推理模型榜一!
在AI大模型军备竞赛中,阿里云近期推出的QwQ-32B推理模型引发了行业震动。这款仅320亿参数的稠密模型,在数学推理(AIME24)和代码能力(LiveCodeBench)等核心指标上,竟与6710亿参数的DeepSeek-R1不相伯仲。
2025-05-02 08:00:00
962
原创 DeepSeek服务器繁忙?别慌,试试这几个方法!
据说DeepSeek三天内的访问量相当于整个欧洲互联网三天的总和!所以,DeepSeek卡死在所难免,其实我今天也试了n多次,只有几次成功,等来的永远都是那句“服务器繁忙,请稍后再试”。于是,我就学着网上的方法去各大AI平台统统都问了个遍。
2025-05-01 08:00:00
1208
原创 最强开源大模型?Qwen3 系列深度解析 + 本地部署指南!看到就是赚到!!
Qwen3(通义千问3)是阿里云Qwen团队推出的新一代开源大语言模型系列,涵盖密集模型和混合专家(MoE)模型多个规模。本次发布共开源了 6 个密集模型和 2 个 MoE 模型,参数量从 6亿 到 2350亿 不等。其中密集模型包括约0.6B、1.7B、4B、8B、14B和32B参数版本,MoE模型包括总参数约30B(激活参数3B)和235B(激活参数22B)的两种。所有模型均采用Apache 2.0开源许可,开发者可自由下载使用。
2025-04-30 11:27:36
944
原创 别只关注Qwen3参数量,这些Agents细节才是最大亮点!
除此之外,还特地提到了在Agent能力上做了大幅的增强。博客中特地强调了使用Qwen-Agents项目发挥Qwen3的最强能力。 首先这个项目是个23年的老项目了。最早开源的时候,代码质量很差,简单看过。这2年也在陆陆续续的更新,今天仔细的扒一下源码,发现它的变化还挺大的,所以给家人们分享一下~
2025-04-30 10:20:41
555
原创 真实场景下落地RAG的十条建议及RAG中如何提升个性化?看完这一篇你就懂了!!
RAG无处不在、无孔不入,却又缝缝补补,且出现了诸如GraphRAG、多模态RAG、Deepresearch等许多变体。RAG的方案人手一份,但是依旧在实际落地过程中出现各类问题。
2025-04-29 11:55:17
529
1
原创 2万字长文!从Transformer到DeepSeek位置编码,全面了解「大模型位置编码」!
位置编码是大模型架构的重要组成部分。本文从位置编码的起源开始介绍,详细介绍Transformer位置编码、相对位置编码、重点介绍了旋转位置编码RoFE、ALiBI位置编码等,最后介绍DeepSeek位置编码,希望能够帮你对位置编码有一个详细的了解。文章结构如下:
2025-04-29 11:24:48
1048
原创 一文剖析大模型、RAG、Agent、MCP、Function Calling、知识库、向量数据库、知识图谱、AGI 的区别和联系
我们要把 AI 大模型当做人的大脑,因此调用 AI 大模型,相当于调用一个人,把 AI 大模型当人看,TA 懂人话、TA 说人话、TA 会直接给出结果,但结果不一定正确。因此在 AI 大模型的推理基础上,通过 RAG、Agent、MCP、Function Calling、知识库、向量数据库、知识图谱等技术手段实现了真正的 AGI(通用人工智能)。这些技术到底有哪些区别和联系,下图作了横向对比,接下来我们详细剖析。
2025-04-28 11:42:41
1002
原创 AI大模型综述:大语言模型Agent在金融交易中的应用与展望
近年来,大语言模型(LLM)在自然语言处理领域取得了突破性进展,展现出强大的文本理解与策略生成能力,为金融交易这一高复杂度、高竞争性的领域带来了前所未有的应用前景。传统金融算法虽在结构化数据建模方面具有优势,但在处理非结构化文本、多模态信息融合及实时决策等方面仍存在明显不足。LLM的兴起为解决上述问题提供了新思路,其能够高效处理并整合新闻、财报、分析师观点等多源信息,为交易决策提供有力支持。本文系统回顾了LLM作为交易智能体(Agent)在金融领域的应用进展,重点探讨其在策略生成与因子挖掘中的双重角色,涵盖
2025-04-28 11:09:33
1017
原创 什么是 AI Agent?简要介绍与构建指南,零基础小白看这一篇就够了!!
下一件大事? Gartner 认为 AI Agent 将引领未来。OpenAI、Nvidia 和 Microsoft 都在下注,就连在 AI 领域一直比较低调的 Salesforce 也开始布局。这一趋势确实正在快速起飞。
2025-04-27 11:04:54
545
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人