自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1359)
  • 收藏
  • 关注

原创 一文掌握大模型Prompt:万能框架+优化技巧+常用指标

Prompt万能框架:结构化编写指南 本文提出了一套通用的Prompt编写框架,将Prompt拆分为四个结构化部分: 立角色:通过角色设定调用模型特定能力包,可参考招聘JD模板 述问题:清晰描述任务背景和需求 定目标:明确具体要完成的工作内容 补要求:补充格式、风格等具体要求 该框架优势在于: 降低从0到1编写Prompt的难度 通过模块化提升Prompt管理效率 适用于各类任务场景 便于后续优化迭代 文中还提供了详细的角色设定模板和示例,建议借助招聘信息补全专业领域角色描述,并强调复杂任务需要人工拆分。该

2026-02-19 13:03:49 638

原创 2026程序员转型秘籍:掌握这张大模型转型路线图,决定你未来五年的职业薪资!

摘要: AI正重构程序员价值体系,基础编码任务将被AI接管,未来岗位需求呈现“K型分化”。程序员需从代码实现者升级为“AI架构师”,掌握系统架构思维、场景定义能力和人机协同编程三大核心能力。本文提供3-6个月转型路径:1个月认知筑基,2-3个月攻克RAG与Agent技术并完成实战项目,1个月工程化与求职准备。警惕“API调用员”陷阱,深耕垂直领域,通过开源社区持续学习。AI浪潮下,掌握大模型思维的程序员将获得更高溢价与不可替代性。(149字)

2026-02-19 13:01:54 659

原创 AI Agent规划大揭秘!这才是真正的Planning

本文详细介绍了Agent规划(planning)的核心概念和工作流程。规划是指Agent根据用户任务目标及约束条件,生成并执行最优解决方案的过程。文章阐述了规划的三个关键组件:计划生成、验证和执行,指出复杂任务需要解耦这三个阶段以提高效率。作者讨论了大型语言模型(LLM)在规划中的作用,认为虽然LLM可能存在规划能力局限,但通过提示工程和工具集成仍可有效完成规划任务。文中还比较了强化学习(RL)Agent和基础模型(FM)Agent的异同,预测两者未来将趋于融合。最后通过家用显卡查询的示例,展示了如何通过提

2026-02-19 12:54:20 720

原创 RAG系统优化指南:Chunk分块策略详解,从入门到精通,收藏这一篇就够了!!

RAG系统中的分块策略:从基础到高级 本文探讨了检索增强生成(RAG)系统中的文档分块技术,分析了不同策略的优缺点。文章首先指出分块是影响RAG性能的关键因素,既需要优化检索效率,又要保留足够的上下文信息。核心内容分为预分块和后分块两大时间维度,并详细介绍了9种具体策略,包括固定大小分块、递归分块、语义分块等。特别强调了分块大小对LLM处理能力的影响,建议根据文档类型选择合适策略。文中还提供了PDF预处理建议和Python代码示例,为开发者实践提供了实用指导。

2026-02-19 12:45:26 599

原创 【一文读懂】RAG的重要组成-向量数据库

向量数据库(Vector Database),看似莫测高深的一个名词,在众多AI技术文章中经常出现,那向量数据库究竟是个什么鬼呢?本篇深入浅出,为各位同学介绍一下它的相关知识。

2026-02-19 12:43:06 469

原创 万字解析:RAG问题与优化策略!掌握Agent必备技能!AI学习你不能错过的RAG最全科普!

最近在落地实操的RAG+LLM的Agent的配置过程中各种碰壁啊!无所不用其极的尝试各种办法,还是发现对于模型输出的结果的准确度和质量收效有限,带着一肚子的问题,笔者这回想喝到假一起深入探讨针对 Retrieval-Augmented Generation (RAG) 在实际应用中遇到的主要痛点所提出的解决方案,好能在日常的 RAG 模型开发与优化过程中,高效且有效地克服这些难题,进一步提升自然语言处理(NLP)领域的整体表现力和实用性。

2026-02-19 12:41:43 579

原创 【AI大模型】一文彻底解析Transformer - 多头注意力(Multi-Head Attention)

**在深度学习中,多头注意力(Multi-Head Attention)是一种注意力机制。它是对传统注意力机制的一种改进,旨在通过分割输入特征为多个“头部”(head)并独立处理每个头部来提高模型的表达能力和学习能力。**

2026-02-15 20:58:30 921

原创 【AI大模型落地应用解析】AI大模型在公路交通领域的应用

在人工智能技术的浪潮中,AI大模型(Foundation Models)正以其卓越的数据处理能力和复杂的计算结构,在公路交通领域引发一场深刻的变革。这些模型不仅推动了社会生产力的提升,还在理解、学习、适应和实现任何知识工作的能力上展现出巨大潜力,即向通用人工智能(AGI)阶段的快速进化。

2026-02-15 20:56:55 617

原创 【AI大模型】一文解析AI模型推理,与训练有什么差异?

在 AI 领域,推理(Inference)和训练(Training)是 AI 模型生命周期中的两个核心阶段,训练时,模型借大量数据与算法学习规律,此过程计算资源消耗巨大且耗时漫长,旨在构建精准模型。而推理则是利用已训练好的模型对新数据进行快速判断与处理,资源需求相对较少,二者差异显著却相辅相成。大家平时听到 AI 训练比较多,对于推理相对陌生,本文主要介绍模型推理的运行原理以及与训练的差异,让读者对 AI 推理有个详细的了解。

2026-02-15 20:55:06 866

原创 突然发现图解Transformer真的好清晰!Transformer工作原理

本文将深入剖析Transformer的内部工作原理,详细研究其运作细节。我们将通过实际的矩阵表示和形状,观察数据如何在系统中流动,并理解每个阶段进行的计算。本文目标不仅是理解Transformer是如何工作的,更要探究它为何如此工作。

2026-02-15 20:52:49 463

原创 【AI大模型】自然语言处理 - 一文搞懂NLP:总体介绍

本文将从**NLP的本质、NLP的原理、NLP的应用**三个方面,带您**一文搞懂NLP(一):总体介绍**。

2026-02-15 20:50:30 668

原创 带你一文搞懂:什么是智能体?汇总几个常用的AI智能体(Agent)

在百度百科上找到的回答:“智能体,顾名思义,就是具有智能的实体,英文名是Agent。以云为基础,以AI为核心,构建一个立体感知、全域协同、精准判断、持续进化、开放的智能系统。”

2026-02-15 20:48:48 629

原创 LLM智能体记忆注入攻击(MINJA)剖析:零基础理解大模型安全隐患

文章详细解析了LLM智能体的记忆注入攻击(MINJA)原理与防御策略。攻击者通过正常查询交互,利用智能体记忆系统的开放性,植入恶意内容实现长期操控。文章从攻击原理、技术细节、真实案例和防御策略四个维度展开,提出"写入-检索-推理"全链路防护体系,为开发者和安全人员提供可落地的技术参考,确保大模型智能体的安全可靠运行。

2026-02-10 13:40:14 645

原创 程序员必看:一文搞懂AI Agent架构,收藏这篇就够了

AI Agent已超越对话机器人,发展为感知环境、自主决策的智能系统。文章详解其六大核心模块:感知模块负责信息标准化;决策引擎通过思维链推理进行动态规划;执行系统将决策转化为可靠指令;记忆管理实现分层知识存储;反馈优化模块推动持续进化。这种模块化架构使AI Agent具备自主性、适应性和成长性,推动AI从实验室走向实际应用场景。

2026-02-10 13:38:00 367

原创 Agent 的三重觉醒:Tool、Plan、Memory 如何赋予 LLM 灵魂

文章探讨Agent三大觉醒如何重塑LLM:Tool觉醒打破封闭边界,连接实时世界;Plan/Reason觉醒赋予深度推理能力,从直觉走向系统思考;Memory觉醒引入时间维度,实现持续学习和个性化交互。三者相互交织,使Agent从静态工具转变为动态进化的智能体,并通过Multi-Agent系统实现集体智慧涌现,开启Agent新时代。

2026-02-10 13:28:35 256

原创 【AI大模型】从单步到多步RAG:提升大模型复杂任务处理能力的完整指南

文章介绍了多步检索增强生成(RAG)技术在提升大语言模型处理复杂任务方面的优势与挑战。多步RAG通过"多轮检索+多轮推理"的循环方式,解决了单步RAG信息覆盖不足的问题。针对传统多步RAG存在的"事实碎片化"痛点,最新论文提出的HGMem(基于超图的记忆机制)将被动存储升级为主动关联的超图结构,通过节点和超边构建知识关联网络,使LLM能够进行更连贯、全局的推理,显著提升了多步RAG的性能。

2026-02-09 13:24:25 999

原创 多模态大模型效率提升:Token压缩技术详解与实战指南

本文系统综述多模态大模型(MLLMs)中的Token压缩技术,针对高分辨率图像和长视频带来的计算成本问题。研究基于压缩位置将方法分为视觉编码器、投影器、语言模型及多模块协同四类,并针对不同场景提供选择策略。文章分析了即插即用与重训练、加速训练与推理的权衡,指出当前面临理论辅助缺乏、自适应不足等挑战,为MLLM高效部署提供全面指导。

2026-02-09 13:22:50 777

原创 AI Agent部署架构对比与选择:一篇搞定,建议收藏

文章介绍了AI Agent的四种主流部署架构:批量部署适合大规模后台处理,成本低但延迟高;流式部署支持连续低延迟处理,适合实时监控等场景;实时部署对延迟敏感,常见于聊天机器人等交互应用,但对算力要求高;边缘部署注重隐私和离线使用,延迟低但需压缩模型。文章强调应根据核心需求(延迟、吞吐、成本、隐私、离线)选择最适合的架构,没有万能解法。

2026-02-09 13:21:20 643

原创 大模型预训练数据选择全攻略:6大策略提升模型性能与效率

文章系统介绍了大模型预训练数据选择的六大策略:模型影响力驱动、质量与多样性平衡、多策略集成、结构化知识/技能驱动、任务相关性驱动以及后训练数据选择。这些方法通过动态评估数据价值、平衡质量与多样性、整合多种策略或针对特定领域需求,显著提升了模型性能并减少了计算成本。研究证明,科学的数据选择策略是提高大模型训练效率和性能的关键,未来预训练数据管理将更加智能化和动态化。

2026-02-05 15:09:06 961

原创 建议收藏:一文搞懂Transformer自注意力机制:从Q/K/V到点积相似度

Transformer自注意力机制通过Q/K/V矩阵计算token关联权重。Q*K点积捕获相似度是因为模型训练使语义相近文本对应方向相近的向量,点积量化这种相似性。W_Q、W_K、W_V权重矩阵在训练中通过反向传播和梯度下降学习,用于将输入向量线性变换为Q、K、V,实现注意力计算。

2026-02-05 15:08:04 340

原创 扩散模型中的注意力机制实现详解:从Self-Attention到Cross-Attention的代码解析

本文详细介绍了diffusers库中U-Net的注意力机制实现,包括UNet2DConditionModel类和Transformer2DModel核心单元。文章解析了Self-Attention和Cross-Attention两种注意力的代码实现,展示了query、key、value的计算过程及其数学原理,帮助读者理解扩散模型如何通过注意力机制捕捉图像内部关联并融合文本条件。

2026-02-05 15:06:51 957

原创 Skills:AI能力封装协议的深度剖析,从原理到商业应用

Skills是Anthropic推出的AI能力封装协议,通过自然语言定义业务能力,由运行时容器在沙箱环境中执行。它采用封装和渐进式披露设计,降低认知成本,解决Context爆炸问题。Skills的优势在于自然语言驱动的模块化调用,但存在安全漏洞、版本控制困难等弊端。Skills Hub站的商业化前景取决于能否建立质量评估体系。尽管AI降低了编程门槛,但垂直领域的深度积累依然是产品价值的真正壁垒。

2026-02-04 19:32:37 820

原创 大语言模型部署难题破解:三大优化方向全解析,程序员必藏干货

本文详细分析了大语言模型(LLM)推理部署的三大挑战:模型大小、注意力机制和解码机制。从数据、模型和系统三个层面提出了全面的优化策略,包括输入压缩输出组织、模型结构优化与压缩、推理引擎优化和服务系统优化等关键技术。通过KV缓存、FlashAttention、量化、稀疏化、动态推理等方法,有效解决了高延迟、低吞吐、高存储问题,为LLM高效部署提供了系统性解决方案。

2026-02-04 19:31:18 989

原创 从金鱼记忆到博学大脑:构建企业级AI Agent的完整指南(建议收藏)

本文探讨了如何解决AI Agent的"金鱼记忆"问题,提出了三级检索架构(基础检索、分块阅读、逐步推理),并介绍了使用Elasticsearch实现海量文件秒级感知、Embedding语义召回、MCP协议打破知识孤岛等方案。文章详细阐述了从数据存储、检索逻辑到用户体验的完整实现路径,为不同规模企业提供了AI Agent选型决策依据,帮助开发者构建真正具备"博学大脑"的企业级AI Agent系统。

2026-02-03 13:26:03 924

原创 大模型训练新范式:从RLHF到DPO的简化之路(值得收藏)

本文详细介绍了大模型对齐技术从RLHF到DPO的演进过程。首先解释了RLHF的三阶段训练方法及其使用PPO算法的挑战,包括训练不稳定和成本高。随后,介绍了DPO如何从理论上消除奖励模型和强化学习环节,直接通过二元偏好数据优化模型。文章还提供了DPO的数学推导、代码实现和实际训练案例,以及相关扩展算法,为工程师提供了一种更高效的大模型对齐方法。

2026-02-03 13:24:52 858

原创 【收藏必备】小白也能学会的AI Agent架构:Python单文件实现六大核心模块

文章详细介绍了如何使用Python构建企业级AI Agent,重点解构了六大核心模块:感知模块(定义状态)、执行系统(定义工具)、专业大模型(加载大脑)、决策引擎(构建思考节点)、记忆管理(工作记忆流转)和反馈优化(闭环构建)。作者通过一个Python文件实现了这六大模块,展示了AI Agent本质上是一个被大模型驱动的while循环状态机,适合初级程序员学习和实践。

2026-02-03 13:23:36 760

原创 构建AI Agent的6个关键步骤:从理念到系统化实现指南

文章探讨了AI Agent的系统化构建方法,强调从架构设计而非工具堆砌出发。提出六个关键步骤:判断是否需要Agent、明确定义任务、设计SDAOS闭环、定义工具契约、设置边界(权限/预算/确认)和确保可观测性。核心观点是,成功构建AI Agent的关键不在于选择什么框架,而在于设计可验收、可收敛、可治理的闭环系统,确保Agent能够可靠完成任务而非仅仅看起来像智能体。

2026-01-31 13:18:48 604

原创 2026AI大模型应用开发终极指南:从入门到精通的完整学习路线图!

本文系统介绍了2026年AI大模型应用开发的完整学习路线,包含7个阶段:大模型基础、RAG架构、LangChain应用、模型微调、Agent开发、边缘部署和多模态技术。路线涵盖提示词工程、向量数据库、微调方法等核心技术,并提供多个实战项目(如PDF文档助手、新闻推荐系统)和代码示例。该路线适合不同水平的学习者,帮助开发者全面掌握AI大模型开发技能,提升职业竞争力。配套资源已上传CSDN平台,可供免费获取。

2026-01-30 10:44:28 861

原创 一文说清楚人工智能的嵌入(Embedding)是什么

Embedding是一种将数据映射到高维空间的机器学习技术,通过向量表示文本、图像等数据的语义关系。它分为密集嵌入(高维浮点向量)和稀疏嵌入(高维零值向量)两类,能捕捉词语间的语义关联,如"king-man+woman≈queen"。Embedding像"翻译器"将复杂数据转化为机器可理解的数字,或像地图"坐标"将相似内容靠近表示。该技术广泛应用于搜索引擎、推荐系统和生成式AI中,可显著降低数据维度并节省存储空间。

2026-01-30 10:41:25 598

原创 2026年程序员必藏!AI大模型转型全攻略:三大高薪赛道+可落地学习路径,薪资翻倍不是梦

文章为程序员提供了转型AI大模型的实用指南,指出2026年三大黄金转型赛道:AI应用开发工程师(零基础首选)、大模型算法工程师(技术进阶)和AI基础设施架构师(系统专家升级)。文章提供了可落地的3-5个月学习路径,强调实践项目经验的重要性,并提醒避免盲目补数学、学习过于分散等误区。程序员可利用现有工程能力优势,通过AI应用开发等方向快速转型,实现薪资提升30%-50%的职业发展。

2026-01-29 10:19:27 544

原创 一文读懂Agent思维链:不同大模型如何实现多步推理

文章介绍了Agent模型中的思维链技术,不同大模型虽有不同名称,但核心原理一致:将思考内容带入上下文,提升多步推理稳定性。相比Chatbot场景,Agent需要保留每轮工具调用的思考内容,避免推理偏差。模型原生支持优于工程实现,部分模型还采用签名校验或加密保护思考内容,是Agent多步骤推理的关键技术。

2026-01-29 10:17:13 673

原创 AI Agent入门到实战:核心概念、技术框架与应用案例分析

本文全面介绍AI Agent的基础概念、类型、构成和工作流程,深入探讨支撑其的核心技术,包括LLM应用、强化学习、知识图谱等。文章分析了智能助手、自动化流程等典型应用,讨论了当前挑战与未来趋势,并提出了构建Agent时需关注的用户价值、产品边界、风险管理等关键点。

2026-01-28 11:04:01 684

原创 【2026首发】AI大模型学习教程:零基础入门,系统学习大模型开发与应用!

本文介绍了AI大模型系列教程,面向零基础小白和有基础的程序员,包含六大核心模块:大模型应用开发入门、提示词工程、检索增强(RAG)、AI Agent、大模型部署与微调。第一部分详细讲解了大模型工作原理、参数控制、局限性及应对方案,并通过实践案例演示如何快速搭建大模型对话助手,帮助读者系统掌握大模型技术。

2026-01-26 09:15:00 983 1

原创 给Java/C++/Go程序员的AI转型地图:2026高薪入场券,零基础详细教程,一篇就够了!

AI大模型正成为技术新风口:本文系统介绍了模型(神经网络处理器)、训练(参数调优过程)和大模型(海量数据训练的深度网络)三大核心概念,重点解析了大模型的四大特征:训练数据量级大(如GPT-3使用45TB数据)、架构复杂(多层Transformer堆叠)、参数规模庞大(千亿至万亿级)及超高算力需求(数百GPU协同运算)。文章通过医疗、教育、工业等场景案例,展示了大模型在垂直领域的应用价值,并指出AI人才缺口达400万的市场机遇,最后提供包含学习路线、实战教程等资料的免费资源包获取方式,助力从业者把握AI发展红

2026-01-26 09:15:00 464

原创 大模型Token开销大?掌握这些实用技巧,轻松省下大笔预算!

文章介绍了大模型(LLM)Token成本的优化策略。Token是模型处理文本的基本单位,成本由输入和输出Token数量决定。通过四大策略可显著降低成本:精炼提示词、压缩与筛选上下文、控制模型输出以及优化系统架构。这些策略组合使用,能在不牺牲应用效果的前提下,降低高达80%的LLM使用成本,为开发者和企业提供实用的"省钱"方案。

2026-01-26 09:00:00 1178

原创 从零开始学大模型:Prompt、Skills与MCP三大构建块全面解析!

本文系统解析了大模型生态中的三大构建块:Prompt(即时指令)、Skills(可复用技能模块)和MCP(模型上下文协议)。三者分别承担不同角色:Prompt作为基本交互单元,Skills封装专业知识与流程实现复用,MCP作为标准化协议连接模型与外部系统。文章通过对比分析三者的特点、适用场景及协同关系,帮助开发者根据任务需求选择合适工具,构建更高效的AI智能体应用。

2026-01-26 08:45:00 650

原创 从RAG到Agent:一文读懂向量数据湖在Context Engineering中的核心实践!

文章讲述了从RAG到Agent的技术演进,强调Context Engineering成为提升AI应用能力的关键基础设施。介绍了向量数据湖作为新一代Context存储与处理平台,通过湖仓一体架构统一管理多模态、海量、异构的上下文数据。文章详细阐述了Context Engineering的三大支柱、湖仓一体架构的创新以及生产级治理能力,指出未来的AI应用竞争力不仅在于模型本身,更在于上下文基础设施的深度与效率。

2026-01-26 08:45:00 531

原创 AutoGen框架实战:轻松构建多智能体应用,解决大模型落地难题!

本文详细介绍了如何使用AutoGen框架构建多智能体应用,从环境准备到实际应用,涵盖了连接大模型、消息系统、AssistantAgent工具调用、团队协作模式(RoundRobin/人机协作/Swarm)以及工作流控制等内容。通过具体代码示例和实践建议,帮助读者快速掌握AutoGen,构建可复用的多智能体项目,解决大模型落地过程中的实际问题。

2026-01-25 09:00:00 593

原创 4个提升效率的大模型Skill开源项目,建议收藏学习!

本文介绍了5个实用的AI Skill开源项目,包括视频剪辑工具videocut-skills(自动识别处理口误和静音片段)、去除AI文本痕迹工具、小红书笔记发布工具、Skill安装工具add-skill等。这些工具能帮助创作者和程序员提高工作效率,简化复杂任务,适合各层次用户学习和使用。

2026-01-25 08:45:00 1122

原创 2026年科技风暴中,AI人才如何逆流而上?揭秘大模型技能,程序员职业转型与价值升级的黄金法则!

商汤科技人力资源总监张春娟在采访中直言:“当下AI领域的人才争夺,早已不是单纯的‘抢人’,而是企业为布局未来3-5年战略的‘军备竞赛’。那些偶尔刷屏的千万级offer,不过是AI岗位红利爆发的‘开胃小菜’,更大的机会还在后面。”

2026-01-24 09:30:00 913

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除