自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(664)
  • 收藏
  • 关注

原创 将AI当模型看,为什么能少走很多弯路?看完这篇你就懂了!!

这个标题对很多读者而言会觉得有点奇怪:“AI(这里特指大语言模型)不就是一种数学模型么,很显然的事有必要拿出来讲么?”有必要,是因为我们常常忘记大语言模型的本质。在我们当前的语境下,因为大语言模型的巨大成功,我们会将其视为一个“会说话的人”,或一个“无所不知的专家”,甚至一个“觉醒的意识体”。我们开始赋予它意志、情绪和判断,亦开始恐惧它的取代、操控和失控。但实际上,大语言模型不过是一个庞大的数学函数,是对语言行为的高维建模。

2025-06-12 11:50:39 393

原创 DeepSeek 赋能全流程数据治理,构建智能化数据价值链

在数字经济时代,数据已成为企业核心资产,而高效的数据治理体系是释放数据价值的关键。DeepSeek作为融合自然语言处理(NLP)技术的智能化工具,通过技术创新重构了数据治理全生命周期管理,为数据标准化、质量优化、安全合规及知识挖掘提供系统性支持。

2025-06-12 10:42:23 497

原创 构建自我进化的知识图谱:AI Agent系统赋能新时代

知识图谱的未来,是一套由AI Agent驱动、自主学习、进化、跨模态、跨时间的智能网络。利用图数据库灵活建模的优势,再以Agentic系统不断融合新知,并让多模态理解与时序推理成为图谱活性进化的核心引擎。对专业用户而言,这是数据资产智能化运营与创新变革的必经之路。

2025-06-11 11:54:39 625 1

原创 【喂饭教程】LoRA微调Qwen3 Embedding,全程干货,小白也能轻松学会!!

最近 Qwen 又有大动作,发布 Qwen3 Embedding 系列模型,而且 MTEB 排行榜上获取多个第一,最重要的还是模型全系列开源。不得不说 Qwen 可能已经完成 rag(Retrieval-Augmented Generation)技术栈的大一统了。以后 Retrieval 部分:语义召回可以使用 Qwen3 Embeding召回排序可以使用 Qwen3 Reranking

2025-06-11 11:04:23 762

原创 零基础学RAG从入门到精通,7大核心概念,通俗易懂,产品经理必看!!

未来,每个产品经理都是 AI 产品经理,而每个 AI 产品经理都必须懂 RAG。所谓RAG(Retrieval - Augmented Generation),即信息检索(Retrieval)+内容生成(Generation)。通过 RAG,可以让大模型从指定的内部知识库“检索”准确的内容,再根据准确的内容“生成”回答内容,从而有效避免幻觉。比如,如果直接让大模型进行医疗诊断,由于大模型的本质是概率模型,因此它会提供大量错误或者不相关的信息。有了RAG,大模型就可以从海量的医学文献、病例库中直接检

2025-06-10 11:37:30 741

原创 一文读懂:MCP Servers架构如何像“操作系统”一样管理你的AI能力?

还记得“能力中台”这个词最火的时候吗?几乎每一家大厂都在讲“构建能力中台,实现业务赋能”。然而几年过去了,真正落地且高效运转的“中台系统”却寥寥无几,许多团队甚至在复盘中发现:传统的“中台”架构设计越用越重、越改越慢,最终成了“能力孤岛”的代名词。那问题到底出在哪?我们有没有更轻、更智能、更灵活的替代方案?

2025-06-10 10:30:56 708

原创 AI概念解析:从入门到精通的36个关键术语指南,建议收藏!!

随着AI的普及和快速发展,越来越多的人开始关注AI,但是深奥晦涩的专业术语,让很多人望而却步,甚至对于人们应用AI产生了一定困难。因此,社区决定对AI领域的热点概念和专业术语进行解读,并配备相应图表以便于大家更形象的理解。我们将从七大方面进行深度解读,方便大家能够更好的进入该领域学习和应用。

2025-06-09 11:35:13 738

原创 为什么函数调用是RAG的跳板,而Agent是终极形态?别急,看完这篇文章你就懂了!!

近年来,大模型技术在全球范围内迅速登上风口浪尖。当我们回顾过去,真正能让普通人感受到 AI “智能”魅力的节点,必须提到 ChatGPT 的横空出世。它像一阵春风,吹散了我们对“智能客服”那种机械式回复和频繁出错的印象。想象一下,当你跟一个系统对话时,完全无法分辨是人还是机器——这不再是科幻,而是已经实实在在投入使用的技术。

2025-06-09 10:46:31 854

原创 三分钟让Dify接入Ollama部署的本地大模型!全程干货,零基础小白也能轻松掌握!!

Embedding 模型接入方式与 LLM 类似,只需将模型类型改为 Text Embedding 即可。2.2 使用 Ollama 模型进入需要配置的 App 提示词编排页面,选择 Ollama 供应商下的 llava 模型,配置模型参数后即可使用:

2025-06-08 08:00:00 3354

原创 本地部署DeepSeek+DiFy平台构建智能体应用,零基础小白收藏这一篇就够了!!

在大模型实际应用落地时候,利用智能体平台,构建本地的向量化知识库,基于RAG知识增强技术和大模型的推理能力,提升效率。本文简要介绍RAG、大模型微调和大模型蒸馏的特点,通用智能体平台,并在本地部署DiFy智能体平台,利用本地部署的DeepSeek模型和知识库构建智能体应用。

2025-06-07 14:49:45 816

原创 90%企业不知道的RAG优化秘籍:Dify原生集成RAGflow

正式开始之前我们还要解决一个小问题,安装好的Dify,忽然就不能加载了。通过分析,应该是我们当时装RAGflow的时候,删除了Docker。这里应该也包含着Dify的docker。那进入Dify的Docker目录下,执行docker compose up -d, 重新进行加载,然后再访问Dify,这次没有问题了。

2025-06-07 11:10:37 694

原创 dify案例分享-探秘:AI 怎样颠覆财报分析,打造酷炫 HTML 可视化

今天主要带大家了解并实现了利用 AI 快速分析上市公司财报并生成可视化 HTML 页面的工作流方案。该工作流主要由开始、mineru 插件、llm 大语言模型、参数提取器、代码处理生成 html 调用以及直接回复等组件构成。通过实际验证和测试,我们发现按照此工作流,能够在短时间内生成基于上市公司财务报表的可视化 HTML 页面,效果显著。与传统的财报分析方式相比,该方案不仅提高了分析效率,还能以更直观、美观的方式展示财报数据,为投资者、分析师及其他利益相关者提供了便利。感兴趣的小伙伴可以按照本文步骤去尝试。

2025-06-06 15:14:19 742

原创 “一代更比一代强”:现代 RAG 架构的演进之路

我当时描述的是一个以最基础方式实现的 RAG 系统。自那以后,这个行业不断发展,在此过程中引入了各种先进技术。在这篇文章,我们将探讨 RAG 的演进历程 —— 从基础版本(Naive)到 Agentic。阅读本文后,您将理解 RAG 系统演进过程中的每一步都攻克了哪些挑战。

2025-06-06 11:36:53 605

原创 【大模型微调】通义千问3-0.6B 模型微调,全程干货,小白也能轻松学会!!!

在日常业务场景中,业界普遍使用 DeepSeek 全量版、阿里千问等大型语言模型。与此同时模型生态平台上,还存在大量轻量级模型,其参数规模仅为数 B 级别,甚至如 Qwen3 0.6B 这类更小规格的模型也有其生存空间,与 DeepSeek 671B 的全量版本形成非常大的差异。那么小型语言模型存在的价值和使用场景在哪里。要回答这一问题,企业可从以下维度评估自身实际情况:

2025-06-05 14:05:45 830

原创 AI智能体与大模型创业行动建议,看到就是赚到!收藏这一篇就够了!!

综合行业从业者的见解、行业趋势分析以及真实案例剖析,为AI智能体与大模型领域的创业者提炼一套具有可操作性的行动建议。创业之路充满不确定性,尤其在技术迭代迅速、竞争激烈的AI行业,清晰的战略、灵活的应变以及坚韧的心态至关重要。以下建议将围绕创业者在不同阶段可能遇到的核心问题展开,力求提供有针对性的指导。

2025-06-05 11:18:12 489

原创 AI大模型SFT在帮倒忙?新研究:直接进行强化学习,模型多模态推理上限更高

随着 OpenAI 的 o1/o3 和 Deepseek-R1 等具备强大推理能力的大语言模型相继问世,学界普遍采用「监督微调 + 强化学习」的两阶段训练范式:先通过推理数据进行监督微调(SFT),再通过强化学习(RL)进一步提升性能。这种成功模式启发了研究人员将其优势从纯文本领域拓展到视觉 - 语言大模型(LVLM)领域。但近日的一项研究成果却给出了一个惊人的发现:「SFT 可能会阻碍学习 —— 经常导致出现伪推理路径,而 RL 则是在促进真正的多模态推理!」

2025-06-04 11:48:49 869

原创 挑战强化学习后训练霸权!全新无监督方法仅需1条数据+10步优化

无需标注数据、无需繁琐奖励设计,只用10步就能见效——「熵最小化」或许比强化学习更适合大语言模型快速升级。强化学习(RL)近年来在大语言模型(LLM)的微调中大获成功,但高昂的数据标注成本、复杂的奖励设计和漫长的训练周期,成为制约RL进一步应用的瓶颈。Ubiquant研究团队提出了一种极为简单有效的无监督方法——One Shot熵最小化(Entropy Minimization,EM),仅用一条无标签数据,训练10步内即可显著提升LLM性能,甚至超过使用成千上万数据的RL方法。

2025-06-04 10:58:12 528

原创 【AI大模型本地部署】有手就行,轻松本地部署 Llama、Qwen 大模型,无需 GPU

用 CPU 也能部署私有化大模型?对,没错,只要你的电脑有个 8G 内存,你就可以轻松部署 Llama、Gemma、Qwen 等多种开源大模型。非技术人员,安装 Docker、Docker-compose 很费劲?不用,这些都不需要安装,就一个要求:有手就行~今天主要为大家分享保姆级教程:如何利用普通个人电脑,本地私有化部署 Qwen 大模型。

2025-06-03 18:37:22 821

原创 MCP 是一个安全噩梦 ? 看 Agent 安全框架如何解决它!

从本质上讲,MCP 是一个通信层。它本身不会运行模型,也不会执行工具 —— 它只负责在它们之间传递消息。为了实现这一点,MCP 服务器部署在现有工具的前面,充当翻译层,将它们已有的 API 转换为适合大语言模型(LLM)使用的接口。这样一来,LLM 就可以以一致的方式与各种工具和服务进行交互,避免了每次工具发生变化都要重写集成逻辑的麻烦。

2025-06-03 11:38:38 620

原创 Dify+Qwen3+Echarts案例实战:实现数据库数据可视化分析

本案例可实现数据和图表合并输出,用户通过自然语言询问,通过大模型转换为sql语言,然后查询数据库并返回数据,再通过大模型将数据转换为标准Echarts格式数据,最终实现从用户自然语言提问到生成图文并茂可视化报告的全流程自动化。

2025-06-02 08:00:00 698

原创 爆料!DeepSeek R2即将发布:1.2万亿参数,成本暴跌97%,真王炸,还是空欢喜?

DeepSeek 这是要搞一波大的了?一条关于 DeepSeek 新模型的消息在 AI 圈里炸开了锅。什么?DeepSeek-R2,混合专家模型,5.2 PB 训练数据,1.2 万亿总参数,780 亿动态激活参数,最最炸裂的是,R2 的训练和推理成本比 GPT-4 还要低 97.3%?!

2025-06-01 08:00:00 616

原创 如何成为一名成功的AI产品经理:从传统产品到AI产品的转型之路

本文将结合实际经验,为您详细解析AI产品经理的工作流程、学习路径以及成功的关键要素。无论你是刚刚接触AI的新手,还是已经在传统产品领域有所建树的产品经理,这篇文章都将为你提供宝贵的指导和启发。

2025-05-31 08:00:00 712

原创 一键式训练端到端Agent,Qwen3+MCP工具集高效集成!

RLFactory能够让你通过低代码的方式快速训练你的端到端Agent模型,以Qwen3等最新的模型为基座调用你的MCP工具集!Deepseek-R1 的成功已经证明了纯 RL 路线的强大潜力,但现有 RL 框架对于工具配置和奖励设计要求较高的工程能力。RLFactory 的出现,正是为了解决这一痛点,让使用者专注于核心算法创新,而无需为繁琐的工程细节分心。RLFactory 是一个完全开源的、面向Agent模型端到端训练的简单且高效的 RL 后训练框架,其将环境与 RL 后训练解耦,实现了只需工具配置

2025-05-30 11:10:26 785

原创 构建多智能体 AI 应用的5个最佳框架,零基础小白收藏这一篇就够了!!

大型语言模型(LLMs)可以自动化复杂且具有连续性的工作流和任务。例如,你可以使用 LLM 构建一个助手,能够在应用内自主为你下单购买商品并安排送货。这类基于 LLM 的助手被称为“智能体(Agent)”。一个智能体是由 LLM 驱动的助手,被赋予特定的任务和工具,以完成这些任务。在其基本形式中,一个典型的 AI 智能体可能配备有用于存储和管理用户交互的记忆系统,能与外部数据源通信,并使用函数来执行任务。以下是智能体能完成的一些常见示例:

2025-05-30 10:23:01 1083

原创 AI大模型LongRefiner:解决长文档检索增强生成的新思路,看到就是赚到!!

大语言模型与RAG的应用越来越广泛,但在处理长文档时仍面临不少挑战。今天我们来聊聊一个解决这类问题的新方法——LongRefiner。背景问题:长文档处理的两大难题使用检索增强型生成(RAG)系统处理长文档时,主要有两个痛点:信息杂乱:长文档中往往包含大量与用户问题无关的内容,就像大海捞针,模型很难准确找到真正有用的信息。计算成本高:处理完整长文档会大大增加输入长度,导致计算资源消耗增加,系统响应变慢,尤其在实际应用中更为明显。

2025-05-29 14:08:43 522

原创 科技前沿|DeepSeek R2没来,DeepSeek R1+来了~

DeepSeek终于还是在端午节前来炸场了:R2没来,R1更新新版本DeepSeek-R1-0528,看名字你可能以为是个小版本更新,但实际上——“在LiveCodeBench上几乎与OpenAI o3-high相当!”

2025-05-29 11:22:48 914

原创 赢麻了!全体程序员彻底狂欢吧!这个好消息来得太及时!

2025开年,AI技术打得火热,正在改变程序员的职业命运:阿里云核心业务全部接入Agent体系;字节跳动30%后端岗位要求大模型开发能力;腾讯、京东、百度开放招聘技术岗,80%与AI相关……大模型正在重构技术开发范式,传统CRUD开发模式正在被AI原生应用取代!最残忍的是,业务面临转型,领导要求用RAG优化知识库检索,你不会;带AI团队,微调大模型要准备多少数据,你不懂;想转型大模型应用开发工程师等相关岗,没项目实操经验……这不是技术焦虑,而是职业生存危机!

2025-05-28 12:01:13 242

原创 技术实践:如何落地“数据治理+AI大模型?看完这一篇你就知道了!!

数据治理的痛点:为什么需要AI?传统数据治理面临三大挑战:数据孤岛:业务系统分散,数据口径不统一,标准拉不齐。低效流程:人工清洗数据耗时长,执行时间长,效率低下。动态需求:业务变化快,数据标准需频繁更新,人工维护成本高。

2025-05-28 11:04:47 847

原创 Java程序员AI逆袭:不拼数学,照样玩转AI大模型!

不换语言,不卡学历,不拼数学java照样搞AIjava程序员现在面临最大的问题呢就是岗位变少,薪资被压。AI也在强势学习时代确实已经变了。想转AI怕没时间学,怕从年的很高,担心学完完全入不了啊。java又怕被时代给淘汰掉。很多人都觉得转AI必须要去重学去死磕算法,就业的学历门槛也是高上的天其实根本就不是这么回事。

2025-05-27 19:03:57 520

原创 详细介绍AI大模型基础!RAG 和 GraphRAG:了解何时(When)、如何(How)使用它们,建议收藏!!

检索增强生成(RAG)主要目的是为了大模型引入外部知识,减少大模型幻觉,是目前大模型应用开发中必不可少的技术之一。但是传统RAG主要是通过语义相似度在向量空间中进行检索,无法捕获数据库中数据点之间的依赖关系。为此,GraphRAG应运而生。本文将详细介绍传统RAG技术、GraphRAG技术、两者之间的优缺点以及如何将两者结合使用。本文结构安排:

2025-05-27 18:17:34 810

原创 构建企业私有RAG大模型: (可商用)DeepSeek-V3开源部署,真的强吗?看完这篇你就懂了!!

本章将聚焦当前备受瞩目的开源模型 DeepSeek-V3。作为一款自称超越所有开源模型,甚至在部分能力上超过闭源模型的产品,DeepSeek-V3展现了惊人的潜力。不过,从 RAG 系统的实际需求来看,采用 DeepSeek-V3 似乎有些“大材小用”,它更适合应用于数学与代码等需要强推理能力的场景。下表是DeepSeek-V3官网给出基础模型的测试打分:

2025-05-26 14:25:27 910

原创 RAGFlow 入门指南:解锁你的智能知识库引擎,建议收藏!!

RAGFlow 是一款开源的 RAG(Retrieval-Augmented Generation,检索增强生成)引擎,它的核心使命是帮助你利用深度文档理解技术,构建出高质量、高可靠性的智能知识库。无论你是大型企业还是个人开发者,RAGFlow 都能为你提供一套精简而强大的 RAG 工作流程,让你的 LLM 能够真正理解和利用各种复杂格式的数据,给出令人信服的回答并提供清晰的引用来源。

2025-05-26 11:37:28 948

原创 【AI大模型】别再堆文档了,大模型时代知识库应该这样建!看到就是赚到!!

这篇文章是我在进行了数千小时的知识库实践后的一些思考:不仅告诉你“是什么”,更帮你弄明白“怎么做”。你是不是也有这种感觉?“我们知识库里已经有很多内容了,可是模型回答的问题却越来越不靠谱。”

2025-05-25 08:00:00 613

原创 一文剖析大模型、RAG、Agent、MCP、Function Calling、知识库、向量数据库、知识图谱、AGI 的区别和联系

因此在 AI 大模型的推理基础上,通过 RAG、Agent、MCP、Function Calling、知识库、向量数据库、知识图谱等技术手段实现了真正的 AGI(通用人工智能)。这些技术到底有哪些区别和联系,下图作了横向对比,接下来我们详细剖析。

2025-05-24 14:10:47 802

原创 手机也能跑 Qwen3?手把手教你部署!零基础小白也能轻松学会,看到就是赚到!!

全球开源模型冠军 Qwen3、端到端全模态模型 Qwen2.5-Omni,现已成功在手机上跑通!在 MNN 的支持下,Qwen3 系列模型已适配 Android、iOS 及桌面端,实现低延迟、本地化、高安全的 AI 体验。同时,Qwen2.5-Omni 的语音理解、图像分析等多模态能力也在移动端得到完整释放。

2025-05-24 11:37:15 730

原创 Claude 4发布:最强AI编程模型+最强AI Agent基建!

而OpenAI没干成的事,Anthropic来帮老大哥完成了。在Google I/O大会刚结束一天的时间点,Anthropic在凌晨又发布了两个模型:Claude Sonnet 4和Claude Opus 4这两个模型的出现,让Gemini 2.5 Pro还没坐热的AI编程模型头把交椅位置再次易主。

2025-05-23 11:44:30 534

原创 【AI大模型】不懂MCP+A2A协同,你的单智能体只会调用工具!

在AI技术突飞猛进的今天,单智能体的局限性正日益暴露,而智能体(AI Agents)协作已然成为不可逆转的趋势。MCP(Model Context Protocol)和A2A(Agent2Agent)协议的诞生,不仅重新定义了智能体的能力边界,还推动了从单兵作战到团队协作的革命性转变。如果你还在执着于单体AI的“独角戏”,你的应用可能已在竞争中悄然落伍——除非你的场景确实无需多智能体协同。

2025-05-23 11:02:39 775

原创 AI产品经理的基础知识:一篇文章搞懂Transformer以及扩散模型,看到就是赚到!!

这篇文章详细介绍了transformformer以及扩散模型的原理以及来源,我认为作为AI产品经理,这些基础概念一定要知道,否则就很难去考虑哪一类AI模型更加适合自己的用户场景,从而进行产品框架设计。

2025-05-22 11:59:48 611

原创 【AI大模型】在Think中边搜索边调整的搜索增强Reasoning方法,看到就是赚到!!

LLM虽然“知识渊博”,但本质是“死记硬背”——训练数据外的信息它无法掌握。比如问它“2024年奥运会新增项目”,它可能瞎猜。于是科学家们给AI装上“外接大脑”:检索增强生成(RAG),让AI实时搜索外部知识库。但传统方法有个 bug:LLM搜到资料后直接生成答案,就像学生写作业时照抄百度结果,不管内容是否相关。

2025-05-22 11:08:26 695

原创 从理论到实践:RAG、Agent、微调等6种常见的大模型定制策略

大语言模型(LLM)是基于自监督学习预训练的深度学习模型,训练数据量庞大、训练时间长,并且包含大量的参数。LLM在过去两年中彻底改变了自然语言处理领域,展现了在理解和生成类人文本方面的卓越能力。

2025-05-21 14:43:17 972

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除