- 博客(536)
- 收藏
- 关注

原创 AI 正在颠覆编程,程序员的出路在哪里?
AI 的飞速发展,让程序员群体感受到了前所未有的压力。我们的工作,真的会被 AI 取代吗?未来的职业发展方向究竟在哪?今天,我们就来聊聊 AI 时代下,程序员的出路到底在哪里。AI 在编程领域的应用正在飞速普及。从 GitHub Copilot 可以自动生成代码,到 ChatGPT 几秒内解答编程问题,这些工具正在迅速改变开发者的工作方式。想象一下,过去需要花几个小时、几天写出来的代码,现在 AI 可以在几分钟内帮你搞定。是的,这个场景听起来像科幻小说,但它正在成为现实。答案是:不会。至少不会完全被取代。
2024-10-09 10:20:29
1931

原创 终于有人把多模态大模型讲这么详细了
多模态大型语言模型(Multimodal Large Language Models, MLLM)的出现是建立在大型语言模型(Large Language Models, LLM)和大型视觉模型(Large Vision Models, LVM)领域不断突破的基础上的。这里给大家总结了多模态大模型的结构,训练,评估方法以及幻觉问题的解决办法,通俗易懂!!
2024-10-06 11:03:36
2043

原创 最详细的AI产品经理学习路径|精确到天
⏩这里,我整理了一份详细的AI产品经理学习路径,大家只要按照思维导图,进行学习就可以了💎整个学习框架和体系是精心打磨的,无脑跟着学,转行AI产品经理就很简单了✊系统框架👇:1️⃣AI产品全局了解2️⃣Python编程3️⃣机器学习4️⃣深度学习5️⃣AI产品设计6️⃣AI产品项目管理7️⃣简历准备与面试。
2024-09-25 10:24:32
1433

原创 面试面经|大模型算法岗常见面试题100道
大模型LLM(Large Language Models) 通常采用基于Transformer的架构。Transformer模型由多个编码器或解码器层组成,每个层包含多头自注意力机制和前馈神经网络。这些层可以并行处理输入序列中的所有位置,捕获长距离依赖关系。大模型通常具有数十亿甚至数千亿个参数,可以处理大量的文本数据,并在各种NLP任务中表现出色。
2024-09-21 10:27:39
2534

原创 初学者如何快速入门大语言模型(LLM)?
在大模型时代,我们如何有效的去学习大模型?现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。掌握大模型技术你还能拥有更多可能性• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
2024-09-18 14:32:20
1672

原创 救命!真的不要盲目去自学AI大模型!!!
不要盲目去自学AI大模型!!!不要盲目去自学AI大模型!!!不要盲目去自学AI大模型!!!重要的事情说三遍,大模型内容特别多!东学一个西学一个,真的费时又费力!这里给大家分享大模型学习路线 ,让你不在盲目自学大模型适合零基础想系统学习大模型的你
2024-09-11 11:18:49
1366
原创 【写给小白的LLM】AI大模型中的 token 到底是个什么?
摘要: Token是大模型处理文本的最小单位,相当于AI的“文字积木块”,通过分词算法将文本拆分为单词、标点或子词。中英文Token计算不同:英文1个Token≈0.75单词,中文1个Token≈1-2汉字。Token数量直接影响模型成本(如GPT按Token计费)、输入限制(如32K Token上限)和回答质量。主流模型使用子词级编码(如BPE),通过Tokenizer将文本转为数字ID再处理。优化Token使用可节省成本,例如精简提问、控制输出长度。理解Token机制有助于高效使用大模型工具。 (字数:
2025-06-12 22:38:32
157
原创 斯坦福李飞飞最新巨著《AI Agent综述》_aiagent综述 中文版
这篇由李飞飞等14位专家联合撰写的80页论文探讨了多模态AI系统的前沿发展,重点分析了AI代理与环境交互的关键技术。研究涵盖基础模型应用、多模态感知、外部知识整合及人类反馈机制,提出通过改进具身行为预测来增强代理系统性能。论文展望了AI代理在虚拟现实中的创新应用场景,如用户自主创建交互式模拟环境,同时探讨了NLP领域的机器翻译、语音识别等技术进步及其应对假新闻等挑战的解决方案。研究还前瞻性地提出了Agent AI在物理世界行动与虚拟环境交互的未来发展方向。 (全文149字)
2025-06-12 22:34:53
219
原创 Thinker:揭秘AI如何像人类一样“快思考+慢思考”——让大模型推理更聪明、更高效
这篇论文《Thinker》提出了一种创新方法,让大语言模型像人类一样分步骤思考:先快速直觉判断(Fast Thinking),再验证准确性(Verification),必要时深入推理(Slow Thinking),最后提炼精要(Summarization)。实验表明,这种"快思考+慢思考"的闭环训练方式在数学推理任务上表现优异,相比传统方法可减少8倍token消耗,同时提升11.9%的平均准确率。该方法借鉴心理学双系统理论,通过拆解思维过程并针对性训练,使AI既能快速响应,又能精确验证,
2025-06-04 22:02:14
756
原创 上交2025最新-《动手学大模型》实战教程及ppt免费分享!
上海交通大学推出《动手学大模型》免费实战教程,基于AI安全技术课程开发。该教程涵盖大模型微调部署、API调用、文本水印等核心内容,提供详细编程实践指导。包含PPT和完整学习资料,目前已在GitHub获2.2K星标热度。通过简单实践帮助学习者快速入门大模型技术,适合课程设计与学术研究。所有资料可通过指定二维码免费获取,内容包含多模态模型、越狱攻击等前沿领域。
2025-06-04 21:50:57
329
原创 【大模型入门】修改上百次,2025最详细的大模型学习路线整理出来啦!
《2025大模型学习指南:从入门到进阶的全方位路线》为AI新手提供系统化学习路径,涵盖L1-L4四个阶段:L1掌握大模型基础原理与提示工程,L2专攻RAG应用开发,L3进阶Agent架构实践,L4深入模型微调与部署。配套资源包含经典PDF书籍、视频教程、实战项目及面试题库,通过"理论+实践"双轨模式帮助学习者快速成长。完整资料可扫码免费获取,助力从零基础到技术精通的完整进阶。
2025-05-29 21:36:55
300
原创 我们为什么放弃传统RAG?实测案例告诉你,多模态RAG有多强!
摘要 传统文本RAG系统在企业落地中面临准确率不足的问题,主要源于复杂文档(含表格、图片等)在解析、切分、向量化过程中的信息丢失。多模态RAG通过视觉语言模型(VLM)如ColPali/Qwen直接生成图像和文本的融合嵌入向量,显著提升了文档理解能力。实测显示,多模态RAG能准确解析PDF表格、提取目录结构,且检索速度快。尽管需要高性能GPU支持(如4090)且计算成本较高,但其问答质量的提升使这些问题相对次要。多模态RAG已成为解决复杂文档理解的有效方案,KnowFlow将持续在该领域深耕。
2025-05-29 21:31:25
1003
原创 2025最新程序员转行AI大模型教程:非常详细,从入门到精通,收藏这一篇就够了!
本文为Java程序员转行AI大模型开发提供了系统性指南。文章首先明确了大模型作为具备海量参数的智能系统,能够处理NLP、图像识别等复杂任务。针对转型路径,提出了五步走方案:1)学习机器学习/深度学习基础理论;2)掌握TensorFlow/PyTorch等工具框架;3)提升编程与算法优化能力;4)巩固高等数学知识;5)通过开源项目或竞赛积累实战经验。特别指出Java开发者的工程化思维优势,并附赠包含640份行业报告、学习视频等资源的LLM大模型资料包。最后展望了AI大模型时代催生的新型技术岗位,强调模型能力带
2025-05-28 22:38:01
750
原创 蚂蚁开源最新报告:Agent 框架热潮褪去,大模型开发已经进入“生死局”
从 2022 年起,“AI 一天,人间一年”就成了行业内的普遍共识。AI 技术迭代速度之快,让从业者既兴奋又焦虑。一方面,大模型能力正不断进化,疯狂刷新人们的认知边界。从最初的文本生成到多模态交互,从对话式 AI 到具身智能,无一不令人兴奋。另一方面,回看这些年涌现的 AI 项目,一个个迅速地崛起、消亡,其中甚至不乏 AI 独角兽项目跌落神坛,真正能够屹立在山巅的佼佼者寥寥无几。
2025-05-28 22:06:28
808
原创 25年大模型面试必问八股文,背完通过率98%,过来的建议面试真的别想着碰运气!!
这篇文章指出AI大模型领域面试中的常见困境:许多求职者虽然熟练使用各类AI工具,却在技术面试中表现不佳。作者分析了三大问题根源:对前沿技术细节(如MoE调度、RLHF)理解不深、实践与理论脱节、缺乏系统性准备。文中提供了《大模型典型示范应用案例集》等学习资料作为解决方案,强调需要从"会用"进阶到"真懂"才能突破面试瓶颈。最后附有CSDN免费领取完整资料的二维码入口。(149字)
2025-05-27 17:19:52
223
原创 吴恩达&open AI联合推出《大模型通关指南》免费pdf分享,手把手教你掌握大模型技术!
LLM(Large Language Models)正在逐步改变人们的生活,对于开发者来说,如何利用LLM提供的API快速、便捷地开发具备更强大能力、集成LLM的应用程序,以实现更新颖、更实用的功能,是一项急需学习的重要技能。吴恩达老师与OpenAI合作推出的大模型系列教程,从大模型时代开发者的基础技能出发,深入浅出地介绍了如何基于大模型API和LangChain架构快速开发结合大模型强大能力的应用。
2025-05-23 11:55:08
944
原创 2025程序员在AI时代如何保持并提升核心竞争力
随着AIGC(如ChatGPT、Midjourney、Claude等)大语言模型的接连涌现,AI辅助编程工具正逐渐改变程序员的工作方式。一方面,这些工具通过代码生成、调试和优化,大大提高了编程效率,缩短了开发周期;另一方面,随着AI能力的增强,许多人开始担忧部分编程工作将被AI取代。那么,在这场技术变革的浪潮中,程序员应该如何应对,才能保持并提升自身的核心竞争力?
2025-05-23 11:48:17
1410
原创 AI产品经理的Know-How:如何打造公司法务智能助理
在企业运营中,合同管理是法务团队的核心职责之一。随着公司规模扩大和业务复杂化,合同数量激增,手工处理变得效率低下且容易出错。AI技术,尤其是智能助理的引入,可以显著提升法务团队的工作效率并降低风险。作为AI产品经理,设计一款公司法务智能助理需要深入理解法务团队的实际需求,并结合AI技术优化合同管理的各个环节。本文从总体思路、合同草拟、合同审查和履约管理四个方面,探讨如何设计这样一款工具。通过模板化设计、结构化输入和在线协作,提升起草效率;通过多维度审查和LLM技术,增强风险控制;通过日历和互动功能,确保履约
2025-05-23 11:41:53
717
原创 5月大模型面试必问八股文,(非常详细)收藏这一篇就够了,背完通过率98%,大模型面试题+答案!
当前大模型技术发展迅速,相关岗位需求激增,面试竞争激烈。本文汇总了大模型算法岗常见面试题,涵盖基础和进阶内容。基础篇包括主流开源模型体系、prefix LM与causal LM的区别、涌现能力原因、大模型架构介绍、Tokenizer实现方法等。进阶篇涉及LLMs复读机问题、多模态大模型应用、处理长文本策略等。文章旨在帮助求职者系统掌握大模型相关知识,提升面试竞争力。
2025-05-23 11:40:15
648
原创 什么是AI Agents?什么是Agentic AI?他们有何不同?
目前,AI Agents 和 Agentic AI 是近年来备受瞩目的新兴概念。随着生成式人工智能模型(如 ChatGPT)的兴起,AI Agents 和 Agentic AI 的研究和应用迅速扩展。本文将详细探讨 AI Agents 和 Agentic AI 的定义、特性、架构、应用领域以及它们之间的区别,并提供一个专业的对比分析。
2025-05-23 11:32:06
752
原创 自学大模型的进[特殊字符]2025年最完整学习路线
要成功应聘大模型相关岗位(如算法工程师、NLP工程师、研究员等),需要系统性地掌握知识体系并积累高质量项目经验。以下是分阶段的学习路线和项目建议:
2025-05-16 11:26:00
803
原创 手把手教你用“知识图谱+大模型”完成知识抽取
下面我们将以“IAEA2011 在维也纳总部举行的第五十五届常委会”为例,带大家具体演示如何通过“知识图谱+大模型”技术,将pdf版的会议记录进行知识的高效、精准地抽取。
2025-05-16 11:13:37
788
原创 2025大模型书籍推荐!大模型项目实战:多领域智能应用开发(附PDF)_大模型应用开发核心技术与领域实践pdf
今天没有多的废话,直接给大家推荐这本书----《大模型项目实战:多领域智能应用开发》!这本书面向大语言模型应用的使用者和开发者,从大语言模型的基础知识开始,逐步深入,详细介绍了常见的操作方法和各类型应用的开发过程。
2025-05-10 17:40:00
866
原创 RAGFlow Agent 实践——构建 AI 资讯推送助手
对于热爱 AI 行业的你,在查阅行业新闻时往往消耗了大量时间。今天将给大家介绍如何利用 RAGFlow 的 Agent 功能,创建一个 AI 资讯推送助手。这个助手能提取网络资讯并进行总结概括,让你轻松掌握行业动态。RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为不同规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。A
2025-05-10 16:47:32
935
原创 人工智能发展机遇下,程序员如何抓住技术普惠红利?
人工智能的发展为程序员带来了巨大的技术普惠红利。通过掌握核心技术、关注行业应用、利用高效工具,程序员可以在这场技术革命中脱颖而出。同时,面对技术更新快、算力资源不足等挑战,程序员需要保持学习热情,积极参与开源社区,构建个人技术品牌。在这个过程中,像飞算JavaAI开发助手这样的工具,将成为程序员实现技术突破的得力助手。抓住AI机遇,不仅是为了个人职业发展,更是为推动技术进步和社会发展贡献力量。未来已来,程序员们,准备好了吗?
2025-05-09 23:06:38
1012
原创 大模型蒸馏技术的演进历史与实现原理
知识蒸馏技术是模型轻量化小型化的一种方式,其效果也远超我们的想象在深度学习领域模型的压缩与部署是一项非常重要的研究课题,原因就在于模型巨大的成本和算力需求;因此,怎么把模型小型化就成为一个亟待解决的问题。因此,一项技术就被应用于模型小型化的过程,这个技术就叫做知识蒸馏,而我们平常说的比较多的是大模型蒸馏技术。当然,知识蒸馏技术并不是一项新技术,其在2015年就已经被诺贝尔奖获得者——Hinton等人提出;之后在chatGPT带火大模型技术之后,知识蒸馏就又再次进入大众的视野。
2025-05-09 23:03:37
684
原创 99%的人都应该看看这本书-《多模态大模型算法、应用与微调》,看完你就是LLM大师!
本书详尽地覆盖了多模态大模型的算法原理和应用实战,提供了丰富的微调技术细节和实际案例,适合对多模态大模型有兴趣的技术人员深入学习及应用。
2025-05-08 17:48:27
434
原创 25种RAG架构大揭秘:AI项目如何选型?
在当今的AI时代,你是否想过,如果AI能够每次都从全球知识中精准地提取完美答案,那会是怎样的体验?检索增强生成(Retrieval-Augmented Generation,简称RAG)正是实现这一目标的幕后英雄。从ChatGPT引用来源的能力到企业AI扫描数千份文件,RAG为语言模型提供了现实世界的根基。然而,RAG并非“一刀切”的解决方案。随着时间的推移,AI研究人员设计了多种专门的RAG架构,每种架构都针对不同的现实世界瓶颈进行了优化,比如幻觉、响应延迟、较差的现实根基或有限的上下文。
2025-05-08 17:46:55
777
原创 2025超全大模型常见面试题(附答案)_大模型面试题
大模型相关的面试问题通常涉及模型的原理、应用、优化以及面试者对于该领域的理解和经验。以下是一些常见的大模型面试问题以及建议的回答方式:
2025-05-07 21:46:19
1292
原创 给MCP加上RAG,工具准确率提升200%,起飞~
大型语言模型(LLMs)在有效利用越来越多的外部工具(如模型上下文协议(MCP)所定义的工具)方面存在困难,这是由于提示膨胀和选择复杂性造成的。因此引入了RAG-MCP,这是一个检索增强生成框架,通过卸载工具发现来克服这一挑战。提示膨胀与 MCP 压力测试框架设计:RAG-MCP框架通过检索增强生成(RAG)技术解决提示膨胀问题。它不将所有工具描述一次性提供给LLM,而是将工具描述存储在外部向量索引中,并在查询时动态检索与用户任务最相关的工具描述。工作流程:框架优势:流程图总结:RAG-MCP的操作流程分为
2025-05-07 21:43:47
709
原创 GitHub 星标10W+的大模型书籍:《轻松入门大模型应用开发:GPT-4 和 ChatGPT 实战指南》
书中还提供了简单易学的示例,帮助读者理解并应用在自己的项目中。此外,书后还附有一份术语表,方便读者随时参考。
2025-05-06 14:04:39
659
原创 2025风口指南:万字长文带你吃透大模型Agent,涵盖应用、场景与发展
2025年,科技领域暗流涌动,一个神秘而又充满潜力的发力点正悄然崛起——Agent!如今,基础模型的能力正以惊人的速度进化,而今年的AI Agent也毫无悬念地成为了热门话题的“宠儿”。更令人瞩目的是,众多最新的学术研究都紧紧围绕着Agent展开,这背后究竟隐藏着怎样的科技密码和发展机遇?
2025-05-06 14:00:17
961
原创 如何快速入门大模型?写给小白的大模型技术学习路线!
经验总结:定期回顾学习过程,总结技术要点和实战经验跨学科融合:探索大模型在其它领域(如金融,法律,医疗等)等应用,扩展知识广度如果用一句话总结就是,学习——实践——再学习——再实践。
2025-05-06 13:57:30
960
原创 本地部署FastGPT保姆级教程!轻松使用在线大语言模型
FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力,它背后依赖OneApi开源项目来访问各种大语言模型提供的能力。各大语言模型提供的访问接口规范不尽相同,为此OneApi项目提供了统一的API接口去对接各种大语言模型。FastGPT的部署架构如图所示:本文章将介绍如何部署OneApi和FastGPT,以及两种在线大语言模型(和)的配置方法。
2025-05-06 13:53:40
941
原创 2025零基础转行大模型要多久?真的能学会吗?
随着人工智能技术的迅猛发展,AI大模型成为了当前最热门的技术领域之一。很多人对AI大模型既充满好奇又感到陌生,特别是对于那些完全没有编程基础的人来说,从零开始学习AI大模型似乎是一项艰巨的任务。但实际上,只要有足够的决心和正确的方法,任何人都有可能成为AI大模型领域的专家。本文将探讨从零基础学习AI大模型需要多长时间,以及如何确保你能够真正学会。
2025-04-23 21:48:34
950
原创 一文说清楚什么是预训练(Pre-Training)、微调(Fine-Tuning)
预训练是指将一个模型在大量通用数据上进行初步训练,使其学习到一些普遍适用的知识,尤其是在自然语言处理(NLP)中。LLM 预训练阶段是教给大型语言模型(LLM)如何理解和生成文本的第一阶段。可以把它看作是阅读大量书籍、文章和网站,以学习语法、事实和语言中的常见模式。在这个阶段,模型通过不同的预训练策略(如自回归语言建模和掩码语言建模)学习文本结构。
2025-04-23 21:42:21
1159
原创 普通人如何抓住AI这个风口?不用怕,推荐适合零基础人员的详细AI学习路线
有热心网友评论:我觉得抓住任何风口的前提是知道这是个风口,这个风口吹在哪里?你现在具备什么能力?可以说chatgpt吹到了每个行业。确实如此,当前的AI真的是改变生活,已经不仅仅限制于聊天、问答和图片处理了。目前国内的很多大厂都接入了AI大模型打造自己的AI工具,比如阿里通义千问、通义灵码,不那么,对于普通人来说,要抓住AI这个风口,肯定是免不了学习一些AI知识。如果你仅仅只是想浅尝而已,可以找几款AI工具使用即可,比如Github Copilot、亚马逊CodeWhisper、
2025-04-22 23:35:24
993
原创 大模型+RAG构建知识问答助手基础教程(非常详细),大模型+RAG构建知识问答助手入门到精通,收藏这一篇就够了!_rag问答系统的搭建
知识问答助手已经成为企业在探索大模型应用时的首选场景之一,基于大模型的知识问答助手不仅能够自动整合企业内外部的海量信息,构建全面、精准的知识图谱,还能够通过自然语言查询,实现一键触达精准答案。大模型存在幻觉问题、可解释性差、隐私和安全问题等明显缺点,为了提高知识问答的准确率,一种基于“大模型+RAG(检索增强生成)”架构的方式正在形成。RAG的本质是在大模型交互之前提前进行搜索,召回正确的上下文给到大模型,决定了大模型生成的天花板。
2025-04-16 22:55:36
623
原创 精选大模型书籍推荐:揭秘大语言模型的奥秘——《自然语言处理:大模型理论与实践》_自然语言处理:大模型理论与实践
《自然语言处理:大模型理论与实践》(预览版)由赵宇教授编写,是一本深入探讨大语言模型世界的专业著作。作为一名正在学习和研究自然语言处理的学生,这本书为我提供了宝贵的理论基础和实践指导。
2025-04-16 22:42:22
850
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人