题目描述
定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。
示例:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.min(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.min(); --> 返回 -2.
思路
–
本题难点: 将 min() 函数复杂度降为 O(1) ,可通过建立辅助栈实现;
数据栈 A : 栈 A 用于存储所有元素,保证入栈 push() 函数、出栈 pop() 函数、获取栈顶 top() 函数的正常逻辑。
辅助栈 B : 栈 B 中存储栈 A 中所有 非严格降序 的元素,则栈 A 中的最小元素始终对应栈 B 的栈顶元素,即 min() 函数只需返回栈 B的栈顶元素即可。
因此,只需设法维护好 栈 B 的元素,使其保持非严格降序,即可实现 min() 函数的O(1) 复杂度。
题解
–
class MinStack {
Stack stack1;//A
Stack stack2;//B
/** initialize your data structure here. */
public MinStack(){
stack1=new Stack<>();
stack2=new Stack<>();
}
public void push(int val){
stack1.add(val);
if(stack2.empty()||stack2.peek()>=val){
stack2.add(val);
}
}
public int min(){
return stack2.peek();
}
public int top(){
return stack1.peek();
}
总结:绘上一张Kakfa架构思维大纲脑图(xmind)
其实关于Kafka,能问的问题实在是太多了,扒了几天,最终筛选出44问:基础篇17问、进阶篇15问、高级篇12问,个个直戳痛点,不知道如果你不着急看答案,又能答出几个呢?
若是对Kafka的知识还回忆不起来,不妨先看我手绘的知识总结脑图(xmind不能上传,文章里用的是图片版)进行整体架构的梳理
梳理了知识,刷完了面试,如若你还想进一步的深入学习解读kafka以及源码,那么接下来的这份《手写“kafka”》将会是个不错的选择。
-
Kafka入门
-
为什么选择Kafka
-
Kafka的安装、管理和配置
-
Kafka的集群
-
第一个Kafka程序
-
Kafka的生产者
-
Kafka的消费者
-
深入理解Kafka
-
可靠的数据传递
-
Spring和Kafka的整合
-
SpringBoot和Kafka的整合
-
Kafka实战之削峰填谷
-
数据管道和流式处理(了解即可)
SpringBoot和Kafka的整合
-
Kafka实战之削峰填谷
-
数据管道和流式处理(了解即可)
[外链图片转存中…(img-oDMzWAIS-1721174396585)]
[外链图片转存中…(img-Zohc76Oo-1721174396586)]